「上手深度学习平台」2 python 环境 中介绍安装了 conda,之后切换到新的环境中便可安装当前环境需要的一些包。这些包以及torch版本、tf版本、cuda版本也就是我们俗称的环境。
pip 官方(详细的建议看官方文档)提到常见的 pip 方式有以下几种:
python -m pip install [options] <requirement specifier> [package-index-options] ...
python -m pip install [options] -r <requirements file> [package-index-options] ...
python -m pip install [options] [-e] <vcs project url> ...
python -m pip install [options] [-e] <local project path> ...
python -m pip install [options] <archive url/path> ...
当然许多时候我们的 pip 是和当前的 python 环境绑定的,因此上诉的 python -m pip
可以直接写成 pip
。
pip install [options] <requirement specifier> [package-index-options]
该安装方式即最常见的安装方式,pip install numpy torch
等等。
pip install [options] -r <requirements file> [package-index-options] ...
该安装方式常见他人写好的项目中,即 pip install -r requirements.txt
。而这里的 requirements.txt 的内容即各种包的名称以及版本。
举个例子
opencv-python
tensorboard
matplotlib
imageio>=2.28.0
因此如果 pip install -r requirements.txt
有问题的时候记得检查下里面的版本号。有些工程的包版本号或者包名称有问题。
pip install [options] [-e] <vcs project url> ...
这边的 vcs project 常见的就是 git 项目。有的 git 项目需要 install 编译。这时候我们选择 git install git+http:xxx
xxx为该 git 的网址 url。
还可以选择把项目下载下来在本地 install,此时使用的是下面的方式
pip install [options] [-e] <local project path> ...
<local project path>
使用该项目的本地路径即可。