完全背包问题

Problem Description

设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为m,今从n种物品中选取若干件(用一个物品可以多次选取),使其重量的和小于等于m,而价值的和为最大。

Input

输入有多组数据,对于每组输入数据第1行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30);
第2行至N+1行:每行两个整数Wi,Ci,表示每个物品的重量和价值。

Output

对于每组输入输出一个数,表示最大总价值。

Sample Input

10 4
2 1
3 3
4 5
7 9

Sample Output

max=12

#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
	//freopen("a.txt","r",stdin);
	int m,n;
	int w[35],c[35];
	while(cin>>m>>n)
	{
		int i,v,f[205]={0};
		for(i=1;i<=n;i++)
		{
			cin>>w[i];
			cin>>c[i];
		}
		for(i=1;i<=n;i++)
		for(v=w[i];v<=m;v++)
		if(f[v-w[i]]+c[i]>f[v])
		f[v]=f[v-w[i]]+c[i];
		cout<<"max="<<f[m]<<endl;
	}
	return 0;
}             // 数学模型:设f(v)表示重量不超过v公斤的最大价值,则f(v)=max{f(v),f(v-w[i])+c[i]}       (v>=w[i],1<=i<=n)


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完全背包问题一个经典的动态规划问题,它与01背包问题类似,但有一个重要的区别。在完全背包问题每种物品可以选择无限次放入背包,而在01背包问题每种物品只能选择一次放入背包。 解决完全背包问题的一常见方法是将其转化为01背包问题。根据引用[3]的思路,我们可以将每种物品拆分成多件只能选0件或1件的01背包物品。具体做法是,对于第i物品,我们将其拆分成⌊V /Ci⌋件费用和价值均不变的物品,然后求解这个01背包问题。 在求解过程,我们需要确定状态变量(函数)和状态转移方程。状态变量可以定义为dp[i][j],表示前i物品放入容量为j的背包所能获得的最大价值。状态转移方程可以表示为dp[i][j] = max(dp[i-1][j-k*Ci] + k*Wi),其k表示第i物品的数量。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的价值为0;dp[i][0] = 0,表示背包容量为0时,无法放入任何物品。 通过以上的分析,我们可以得到完全背包问题的动态规划解法。具体的代码实现和优化可以参考引用[1]和引用[2]的内容。 总结起来,完全背包问题一个经典的动态规划问题,可以通过将其转化为01背包问题来求解。在求解过程,需要确定状态变量和状态转移方程,并考虑边界条件。通过动态规划的方法,可以高效地解决完全背包问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值