基本概念
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。约数和倍数都表示一个整数与另一个整数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数。
"倍"与"倍数"是不同的两个概念,"倍"是指两个数相除的商,它可以是整数、小数或者分数。"倍数"只是在数的整除的范围内,相对于"约数"而言的一个数字的概念,表示的是能被某一个自然数整除的数。
几个整数中公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4。12、15、18的最大公约数是3,记为(12,15,18)=3。
几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数。例如:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12,一般记为[4,6]=12。12、15、18的最小公倍数是180。记为[12,15,18]=180。若干个互质数的最小公倍数为它们的乘积的绝对值。
下面才是正题
最大公约数
定义
最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求法
1.质因数分解法
把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24,60)=12。
2.短除法
短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
其实短除法就是质因数分解法,只是将质因数分解用短除符号来进行
注意:
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。
上面的方法适用于数比较小的情况下,如果数很大会十分麻烦
(两数互质除外)
下面是重点
3.辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319