初等数论 课堂笔记 第一章 -- 整除,(最大)公因数,素数,数论函数[x],{x}

吴正尧老师的《初等数论》的课堂笔记(第一周),主要内容涉及整除,(最大)公因数,辗转相除法,素数以及两个基本的数论函数[x], {x}。
摘要由CSDN通过智能技术生成

索引

定理1.1: q ≠ 0 ,   a = b q + c   ⇒   gcd ⁡ ( a , b ) = gcd ⁡ ( b , c ) q\ne 0,\text{ }a=bq+c\text{ }\Rightarrow \text{ }\gcd \left( a,b \right)=\gcd \left( b,c \right) q=0, a=bq+c  gcd(a,b)=gcd(b,c)

定理证明:
gcd ⁡ ( a , b ) ∣ a gcd ⁡ ( a , b ) ∣ b } ⇒   gcd ⁡ ( a , b ) ∣ c = a − b q   ⇒   gcd ⁡ ( a , b ) ≤ gcd ⁡ ( b , c ) gcd ⁡ ( b , c ) ∣ b gcd ⁡ ( b , c ) ∣ c } ⇒   gcd ⁡ ( b , c ) ∣ a = b q + c   ⇒   gcd ⁡ ( b , c ) ≤ gcd ⁡ ( a , b ) }   ⇒   gcd ⁡ ( a , b ) = gcd ⁡ ( b , c ) \left. \begin{aligned} & \left. \begin{aligned} & \left. \gcd \left( a,b \right) \right|a \\ & \left. \gcd \left( a,b \right) \right|b \\ \end{aligned} \right\}\Rightarrow \text{ }\left. \gcd \left( a,b \right) \right|c=a-bq\text{ }\Rightarrow \text{ }\gcd \left( a,b \right)\le \gcd \left( b,c \right) \\ & \left. \begin{aligned} & \left. \gcd \left( b,c \right) \right|b \\ & \left. \gcd \left( b,c \right) \right|c \\ \end{aligned} \right\}\Rightarrow \text{ }\left. \gcd \left( b,c \right) \right|a=bq+c\text{ }\Rightarrow \text{ }\gcd \left( b,c \right)\le \gcd \left( a,b \right) \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }\gcd \left( a,b \right)=\gcd \left( b,c \right) gcd(a,b)agcd(a,b)b} gcd(a,b)c=abq  gcd(a,b)gcd(b,c)gcd(b,c)bgcd(b,c)c} gcd(b,c)a=bq+c  gcd(b,c)gcd(a,b)  gcd(a,b)=gcd(b,c)

辗转相除法

∀ a , b ∈ Z ≥ 1 \forall a,b\in \mathbb{Z}_{\ge 1}^{ {}} a,bZ1,考虑以下过程
a = b q + r 1 ,   0 < r 1 < b b = r 1 q 2 + r 2 ,   0 < r 2 < r 1 ⋯ r n − 2 = r n − 1 q n + r n ,   0 < r n < r n − 1 r n − 1 = r n q n + 1 + r n + 1 ,   r n + 1 = 0 \begin{matrix} a=bq+r_{1}^{ {}},\text{ }0<r_{1}^{ {}}<b \\ b={ {r}_{1}}{ {q}_{2}}+{ {r}_{2}},\text{ }0<{ {r}_{2}}<{ {r}_{1}} \\ \cdots \\ { {r}_{n-2}}={ {r}_{n-1}}{ {q}_{n}}+{ {r}_{n}},\text{ }0<{ {r}_{n}}<{ {r}_{n-1}} \\ { {r}_{n-1}}={ {r}_{n}}{ {q}_{n+1}}+{ {r}_{n+1}},\text{ }{ {r}_{n+1}}=0 \\ \end{matrix} a=bq+r1, 0<r1<bb=r1q2+r2, 0<r2<r1rn2=rn1qn+rn, 0<rn<rn1rn1=rnqn+1+rn+1, rn+1=0
注:每进行一次带余除法,余数 r k { {r}_{k}} rk至少减1,而 b b b是有限的,所以最多进行 b b b次带余除法(步骤是有限的)。
有:

  1. gcd ⁡ ( a , b ) = r n \gcd \left( a,b \right)={ {r}_{n}} gcd(a,b)=rn
    证明:
    r n = ( 0 , r n ) = ( r n + 1 , r n ) = ( r n , r n − 1 ) = ( r n − 1 , r n − 2 ) = ⋯ = ( r 2 , r 1 ) = ( r 1 , b ) = ( b , a ) \begin{aligned} & { {r}_{n}}=\left( 0,{ {r}_{n}} \right) \\ & =\left( { {r}_{n+1}},{ {r}_{n}} \right) \\ & =\left( { {r}_{n}},{ {r}_{n-1}} \right) \\ & =\left( { {r}_{n-1}},{ {r}_{n-2}} \right) \\ & =\cdots \\ & =\left( { {r}_{2}},{ {r}_{1}} \right) \\ & =\left( { {r}_{1}},b \right) \\ & =\left( b,a \right) \\ \end{aligned} rn=(0,rn)=(rn+1,rn)=(rn,rn1)=(rn1,rn2)==(r2,r1)=(r1,b)=(b,a)
    例子:求 gcd ⁡ ( 1485 , 1745 ) \gcd \left( 1485,1745 \right) gcd(1485,1745)
    解:
    1745 = 1485 × 1 + 260 1485 = 260 × 5 + 185 260 = 185 × 1 + 75 185 = 75 × 2 + 35 75 = 35 × 2 + 5 35 = 5 × 7 + 0 ⇒ gcd ⁡ ( 1745 , 1485 ) = 5 \begin{aligned} & \begin{matrix} 1745=1485\times 1+260 \\ 1485=260\times 5+185 \\ 260=185\times 1+75 \\ 185=75\times 2+35 \\ 75=35\times 2+5 \\ 35=5\times 7+0 \\ \end{matrix} \\ & \Rightarrow \gcd \left( 1745,1485 \right)=5 \\ \end{aligned} 1745=1485×1+2601485=260×5+185260=185×1+75185=75×2+3575=35×2+535=5×7+0gcd(1745,1485)=5

  2. Q k a − P k b = ( − 1 ) k − 1 r k ,   k = 1 , 2 , ⋯   , n { {Q}_{k}}a-{ {P}_{k}}b=\left( -1 \right)_{ {}}^{k-1}{ {r}_{k}},\text{ }k=1,2,\cdots ,n QkaPkb=(1)k1rk, k=1,2,,n,其中
    P 0 = 1 ,   P 1 = q 1 ,   P k = q k P k − 1 + P k − 2 Q 0 = 0 ,   Q 1 = 1 ,   Q k = q k Q k − 1 + Q k − 2 \begin{aligned} & { {P}_{0}}=1,\text{ }{ {P}_{1}}={ {q}_{1}},\text{ }{ {P}_{k}}={ {q}_{k}}{ {P}_{k-1}}+{ {P}_{k-2}} \\ & { {Q}_{0}}=0,\text{ }{ {Q}_{1}}=1,\text{ }{ {Q}_{k}}={ {q}_{k}}{ {Q}_{k-1}}+{ {Q}_{k-2}} \\ \end{aligned} P0=1, P1=q1, Pk=qkPk1+Pk2Q0=0, Q1=1, Qk=qkQk1+Qk2
    证明:
    Q 0 = 0 ,   P 0 = 1 { {Q}_{0}}=0,\text{ }{ {P}_{0}}=1 Q0=0, P0=1
    k = 1 k=1 k=1时,有 a − q 1 b = r 1 = ( − 1 ) 1 − 1 r 1   ⇒   Q 1 = 1 ,   P 1 = q 1 a-{ {q}_{1}}b={ {r}_{1}}={ {\left( -1 \right)}^{1-1}}{ {r}_{1}}\text{ }\Rightarrow \text{ }{ {Q}_{1}}=1,\text{ }{ {P}_{1}}={ {q}_{1}} aq1b=r1=(1)11r1  Q1=1, P1=q1
    k = 2 k=2 k=2时,有
    r 2 = b − r 1 q 2 = b − ( a − b q 1 ) q 2 = b ( q 1 q 2 + 1 ) − a ( q 2 × 1 + 0 ) = b ( q 2 P 1 + P 0 ) − a ( q 2 Q 1 + Q 0 ) \begin{aligned} & { {r}_{2}}=b-{ {r}_{1}}{ {q}_{2}} \\ & =b-\left( a-b{ {q}_{1}} \right){ {q}_{2}} \\ & =b\left( { {q}_{1}}{ {q}_{2}}+1 \right)-a\left( { {q}_{2}}\times 1+0 \right) \\ & =b\left( { {q}_{2}}{ {P}_{1}}+{ {P}_{0}} \right)-a\left( { {q}_{2}}{ {Q}_{1}}+{ {Q}_{0}} \right) \\ \end{aligned} r2=br1q2=b(abq1)q2=b(q1q2+1)a(q2×1+0)=b(q2P1+P0)a(q2Q1+Q0)
    ⇒ ( − 1 ) 2 − 1 r 2 = Q 2 a − P 2 b ,   Q 2 = q 2 Q 1 + Q 0 ,   P 2 = q 2 P 1 + P 0 \Rightarrow { {\left( -1 \right)}^{2-1}}{ {r}_{2}}={ {Q}_{2}}a-{ {P}_{2}}b,\text{ }{ {Q}_{2}}={ {q}_{2}}{ {Q}_{1}}+{ {Q}_{0}},\text{ }{ {P}_{2}}={ {q}_{2}}{ {P}_{1}}+{ {P}_{0}} (1)21r2=Q2aP2b, Q2=q2Q1+Q0, P2=q2P1+P0
    假设对不超过 k ≥ 2 k\ge 2 k2的正整数都成立这条性质,考虑 r k + 1 { {r}_{k+1}} rk+1
    ( − 1 ) k r k + 1 = ( − 1 ) k ( r k − 1 − q k + 1 r k ) = ( − 1 ) k [ ( − 1 ) k − 2 ( Q k − 1 a − P k − 1 b ) − q k + 1 ( − 1 ) k − 1 ( Q k a − P k b ) ] = ( Q k − 1 a − P k − 1 b ) + q k + 1 ( Q k a − P k b ) = ( q k + 1 Q k + Q k − 1 ) a − ( q k + 1 P k + P k − 1 ) b \begin{aligned} & { {\left( -1 \right)}^{k}}{ {r}_{k+1}}={ {\left( -1 \right)}^{k}}\left( { {r}_{k-1}}-{ {q}_{k+1}}{ {r}_{k}} \right) \\ & ={ {\left( -1 \right)}^{k}}\left[ { {\left( -1 \right)}^{k-2}}\left( { {Q}_{k-1}}a-{ {P}_{k-1}}b \right)-{ {q}_{k+1}}{ {\left( -1 \right)}^{k-1}}\left( { {Q}_{k}}a-{ {P}_{k}}b \right) \right] \\ & =\left( { {Q}_{k-1}}a-{ {P}_{k-1}}b \right)+{ {q}_{k+1}}\left( { {Q}_{k}}a-{ {P}_{k}}b \right) \\ & =\left( { {q}_{k+1}}{ {Q}_{k}}+{ {Q}_{k-1}} \right)a-\left( { {q}_{k+1}}{ {P}_{k}}+{ {P}_{k-1}} \right)b \\ \end{aligned} (1)krk+1=(1)k(rk1qk+1rk)=(1)k[(1)k2(Qk1aPk1b)qk+1(1)k1(QkaPkb)]=(Qk1aPk1b)+qk+1(QkaPkb)=(qk+1Qk+Qk1)a(qk+1Pk+Pk1)b
    故有
    Q k + 1 a − P k + 1 b = ( − 1 ) k r k + 1 { {Q}_{k\text{+}1}}a-{ {P}_{k+1}}b={ {\left( -1 \right)}^{k}}{ {r}_{k+1}} Qk+1aPk+1b=(1)krk+1
    其中 P k + 1 = q k + 1 P k + P k − 1 ,   Q k + 1 = q k + 1 Q k + Q k − 1 { {P}_{k+1}}={ {q}_{k+1}}{ {P}_{k}}+{ {P}_{k-1}},\text{ }{ {Q}_{k+1}}={ {q}_{k+1}}{ {Q}_{k}}+{ {Q}_{k-1}} Pk+1=qk+1Pk+Pk1, Qk+1=qk+1Qk+Qk1
    由数学第二归纳法,结论得证。


    推论: ∃ s , t ∈ Z ,   s . t .   a s + b t = gcd ⁡ ( a , b ) \exists s,t \in \mathbb{Z},\text{ }s.t.\text{ }as+bt=\gcd \left( a,b \right) s,tZ, s.t. as+bt=gcd(a,b)
    证明:
    根据辗转相除法, gcd ⁡ ( a , b ) \gcd \left( a,b \right) gcd(a,b)一定存在且设 r n = gcd ⁡ ( a , b ) { {r}_{n}}=\gcd \left( a,b \right) rn=gcd(a,b),则有
    { s = ( − 1 ) n − 1 Q n t = ( − 1 ) n P n \left\{ \begin{aligned} & s={ {\left( -1 \right)}^{n-1}}{ {Q}_{n}} \\ & t={ {\left( -1 \right)}^{n}}{ {P}_{n}} \\ \end{aligned} \right. { s=(1)n1Qnt=(1)nPn

定理1.2: gcd ⁡ ( a , c ) = 1 ,   c ∣ a b   ⇒   c ∣ b \gcd \left( a,c \right)=1,\text{ }\left. c \right|ab\text{ }\Rightarrow \text{ }\left. c \right|b gcd(a,c)=1, cab  cb

证明:
gcd ⁡ ( a , c ) = 1   ⇒   ∃ s , t ∈ Z ,   s . t .   s a + t c = 1 ⇒ ( s a ) b + ( t c ) b = b ⇒ b = s ⋅ ( a b ) + ( t b ) ⋅ c \begin{matrix} \gcd \left( a,c \right)=1\text{ }\Rightarrow \text{ }\exists s,t\in \mathbb{Z},\text{ }s.t.\text{ }sa+tc=1 \\ \Rightarrow \left( sa \right)b+\left( tc \right)b=b \\ \Rightarrow b=s\centerdot \left( ab \right)+\left( tb \right)\centerdot c \\ \end{matrix} gcd(a,c)=1  s,tZ, s.t. sa+tc=1(sa)b+(tc)b=bb=s(ab)+(tb)c
c ∣ a b ,   c ∣ c \left. c \right|ab,\text{ }\left. c \right|c cab, cc,因此有 c ∣ b \left. c \right|b cb

应用:检验 a ∈ Z ≥ 0 a\in { {\mathbb{Z}}_{\ge 0}} aZ0是否是素数。

算法:记 G = { g   ∣   2 ≤ g ≤ a   &   g ∈ Z   &   g   i s   p r i m e } G=\left\{ \left. g\text{ } \right|\text{ }2\le g\le \sqrt[{}]{a}\text{ }\And \text{ }g\in \mathbb{Z}\text{ }\And \text{ }g\text{ }is\text{ }prime \right\} G={ g  2ga  & gZ & g is prime}
{ ∃ g ∈ G ,   s . t .   g ∣ a   ⇒   a   i s   n o t   p r i m e ∀ g ∈ G ,   g ∤ a   ⇒   a   i s   p r i m e \left\{ \begin{aligned} & \exists g\in G,\text{ }s.t.\text{ }\left. g \right|a\text{ }\Rightarrow \text{ }a\text{ }is\text{ }not\text{ }prime \\ & \forall g\in G,\text{ }g\not{|}a\text{ }\Rightarrow \text{ }a\text{ }is\text{ }prime \\ \end{aligned} \right. { gG, s.t. ga  a is not primegG, ga  a is prime
注记:只需检验 ≤ a \le \sqrt[{}]{a} a 的素数是否是 a a a的因子,是因为由算数基本定理,对于任意大于1的整数,可以表示成一系列素数的乘积。因此 ≤ a \le \sqrt[{}]{a} a 的非素数可以分解成一系列 ≤ a \le \sqrt[{}]{a} a 的素数的乘积,问题就又转化为判断素数是否是 a a a的因子的问题。

定理1.3:设 a ∈ Z ≥ 1 a\in { {\mathbb{Z}}_{\ge 1}} aZ1的最小非1因子为 q q q,则1) q q q是素数;2)若 a a a不是素数,则 q ≤ a q\le \sqrt[{}]{a} qa

证明:

  1. ∀ q ′ ∈ Z > 1 \forall q'\in { {\mathbb{Z}}_{>1}} qZ>1,若 q ′ ∣ q \left. q' \right|q qq,则有 q ′ ≤ q q'\le q qq
    另一方面,由 q ∣ a \left. q \right|a qa q ′ ∣ a \left. q' \right|a qa
    q ′ < q q'<q q<q,则与“ q q q a a a的最小非1因子”矛盾;因此 q ′ = q q'=q q=q
    q ′ q' q的任意性可得 q q q是素数。
  2. a a a的因子集为 S ⊃ { 1 , a } S\supset \left\{ 1,a \right\} S{ 1,a}
    a a a不是素数,有 S \ { 1 , a } ≠ ∅ S\backslash \left\{ 1,a \right\}\ne \varnothing S\{ 1,a}=
    q q q a a a的最小非1因子得 q = min ⁡ ( S \ { 1 } ) < a q=\min \left( S\backslash \left\{ 1 \right\} \right)<a q=min(S\{ 1})<a
    因此可设 a = q b a=qb a=qb,其中 1 < q < b < a   ⇒   q 2 ≤ q b = a   ⇒   q ≤ a 1<q<b<a\text{ }\Rightarrow \text{ }{ {q}^{2}}\le qb=a\text{ }\Rightarrow \text{ }q\le \sqrt[{}]{a} 1<q<b<a  q2qb=a  qa

定理1.4: a ∈ Z > 1 ,   a ∣ [ ( a − 1 ) ! + 1 ]   ⇒   a a\in { {\mathbb{Z}}_{>1}},\text{ }\left. a \right|\left[ \left( a-1 \right)!+1 \right]\text{ }\Rightarrow \text{ }a aZ>1, a[(a1)!+1]  a是素数。

证明:
d ∈ Z > 0 ,   d ∣ a ,   d < a d\in { {\mathbb{Z}}_{>0}},\text{ }\left. d \right|a,\text{ }d<a dZ>0, da, d<a
{ { d ∈ Z > 0 d < a   ⇒   d ∈ { 1 , 2 , ⋯   , a − 1 }   ⇒   d ∣ ( a − 1 ) ! { d ∣ a a ∣ [ ( a − 1 ) ! + 1 ]   ⇒   d ∣ [ ( a − 1 ) ! + 1 ]   ⇒   d ∣ 1   ⇒   d = 1 \left\{ \begin{aligned} & \left\{ \begin{aligned} & d\in { {\mathbb{Z}}_{>0}} \\ & d<a \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }d\in \left\{ 1,2,\cdots ,a-1 \right\}\text{ }\Rightarrow \text{ }\left. d \right|\left( a-1 \right)! \\ & \left\{ \begin{aligned} & \left. d \right|a \\ & \left. a \right|\left[ \left( a-1 \right)!+1 \right] \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. d \right|\left[ \left( a-1 \right)!+1 \right] \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. d \right|1\text{ }\Rightarrow \text{ }d=1 { dZ>0d<a  d{ 1,2,,a1}  d(a1)!{ daa[(a1)!+1]  d[(a1)!+1]  d1  d=1
因此 a a a的因子只有 { 1 , a } \left\{ 1,a \right\} { 1,a} a a a是素数。

定理1.5:设 p p p是素数,则 ∀ a ∈ Z \forall a\in \mathbb{Z} aZ p ∣ a \left. p \right|a pa异或 gcd ⁡ ( p , a ) = 1 \gcd \left( p,a \right)=1 gcd(p,a)=1

注记:命题 A A

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值