- 博客(69)
- 收藏
- 关注
原创 windows上连接MYSQL
1.下载MYQL下载地址为https://dev.mysql.com/downloads/repo/yum/2. 安装这里如果下载的是zip 包,直接解压到一个安装目录即可完成,我的文件夹地址C:\Users\Administrator\mysql-8.0.18-winx64\mysql-8.0.18-winx643.配置在文件夹中新建一个my.ini的文件[mysqld]# 设置...
2019-11-22 17:44:35 624
原创 python连接MYSQL
'''mysql'''import mysql.connectormydb = mysql.connector.connect(host="localhost",user="root",password="123456",auth_plugin='mysql_native_password') mycursor = mydb.cursor()#创建数据库mycursor.execut...
2019-11-22 17:44:19 296
原创 文本挖掘--python
# -*- coding: utf-8 -*-"""Created on Mon Oct 03 11:07:58 2016@author: liqi"""keep = {'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',' ','-',"
2016-10-07 14:15:17 961
原创 每月调仓投资策略--python
# 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。def query_fundamental(context, bar_dict): # 查询revenue前十名的公司的股票并且他们的pe_ratio在53和67之间。打fundamentals的时候会有auto-complete方便写查询代码。 fundamental_df = get_
2016-10-03 20:50:41 4378
原创 格雷厄姆数字价值投资--python
# 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。import pandas as pdimport numpy as npimport datetimeimport math# 在这个方法中编写任何的初始化逻辑。context对象将会在你的算法策略的任何方法之间做传递。def init(context): scheduler.run_mo
2016-10-03 20:41:41 2643 1
原创 量化投资之简单持有--python
# 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。# 在这个方法中编写任何的初始化逻辑。context对象将会在你的算法策略的任何方法之间做传递。def init(context): context.s1 = "宇通客车" context.s2 = "伊利股份" context.s3 = "中通客车" context.s4
2016-10-03 20:34:57 1899
原创 灰色关联度矩阵--基于Matlab
clc;close;clear all;% 控制输出结果精度format short;% 原始数据x=[308.58 310 295 346 367195.4 189.9 187.2 205 222.724.6 21 12.2 15.1 14.5720 25.6 23.3 29.2 3018.98 19 22.3 23.5 27.655170 174 197 216.4 235
2016-09-10 16:51:14 21751 13
原创 朴素贝叶斯判别法--Matlab
clc;clear all;load fisheriris %这是matlab自带的数据,朴素贝叶斯判别的例子objbayes = NaiveBayes.fit(meas,species);%meas是训练样本 species是分类结果pred = objbayes.predict(meas);%objbayes.predict预测类别归属strcmpi(pred,species);%
2016-09-10 16:01:25 5653 1
原创 SVM预测
x=[1028.371654 959.1841538 956.84571 27.10416667 27.37333333 25.75959.1841538 956.84571 939.7041246 27.37333333 25.75 25.65833333
2016-09-08 21:35:13 3074 1
原创 BP神经网络&&RBF神经网络预测
clc, cleara=load('jingliu.txt'); %把表中第2列到第6列的数据保存到纯文本文件jingliu.txta=a'; %注意神经网络的数据格式,不要把矩阵搞转置了。P=a([1:4],[1:end-1]); [PN,PS1]=mapminmax(P); %自变量数据规格化到[-1,1]T=a(5,[1:end-1]); [TN,PS2]=mapminmax(T);
2016-08-25 17:03:34 7678 1
原创 灰色关联度分析
clc, cleara=[0.83 0.90 0.99 0.92 0.87 0.95326 295 340 287 310 30321 38 25 19 27 103.2 2.4 2.2 2.0 0.9 1.70.20 0.25 0.12 0.33 0.20
2016-08-25 16:48:24 12414 3
原创 遗传算法---飞机巡航问题
clc,clearsj0=[53.7121 15.3046 51.1758 0.0322 46.3253 28.2753 30.3313 6.934856.5432 21.4188 10.8198 16.2529 22.7891 23.1045 10.1584 12.481920.1050 15.4562 1.9451 0
2016-08-25 16:37:33 3185 1
原创 模拟退火法---飞机巡航问题
clc, clearsj0=[53.7121 15.3046 51.1758 0.0322 46.3253 28.2753 30.3313 6.934856.5432 21.4188 10.8198 16.2529 22.7891 23.1045 10.1584 12.481920.1050 15.4562 1.9451
2016-08-25 16:31:24 2041
原创 利用距离进行分类
clc,cleara=[9 7 8 8 9 8 7 4 3 6 2 1 6 8 28 6 7 5 9 9 5 4 6 3 4 2 4 1 47 6 8 5 3 7 6 4 6 3 5 2 5 3 5];train=a(:,[
2016-08-25 16:06:58 721
原创 因子分析--我国上市公司盈利能力与资本结构的实证分析
clc,clearssgs = [43.31 7.39 8.73 54.89 15.3517.11 12.13 17.29 44.25 29.6921.11 6.03 7 89.37 13.8229.55 8.62 10.13 73 14.8811 8.41 11.83 25.22 25.4917.63
2016-08-25 16:00:53 1873 1
原创 支持向量分类机---乳腺癌的诊断
%原始数据cancerdata.txt可在网上下载,数据中的B替换成1,M替换成-1,X替换成2,删除了分割符*,替换后的数据命名成cancerdata2.txtclc,cleara=load('cancerdata2.txt');a(:,1)=[]; %删除第一列病例号gind=find(a(:,1)==1); %读出良性肿瘤的序号bind=find(a(:,1)==-1); %读出
2016-08-25 15:38:17 3802
原创 支持向量机实现分类
clc, cleara0=[8.35 23.53 7.51 8.62 17.42 10.00 1.04 11.219.25 23.75 6.61 9.19 17.77 10.48 1.72 10.518.19 30.50 4.72 9.78 16.28 7.60 2.52 10.327.73
2016-08-25 15:22:16 2288
原创 蚁群算法优化
%% 第8章 蚁群算法及Matlab实现——TSP问题% 程序8-1%--------------------------------------------------------------------------%% 数据准备% 清空环境变量clear allclc% 程序运行计时开始t0 = clock;%导入数据citys=xlsread('旅游城市聚类 - 经纬度.xls
2016-08-25 13:14:28 2257
原创 灰色预测水果销量
clearsyms a b;c=[a b]';H1 = [97209375 25245141 18823858 14280912 6860331 8328256 2211484 359329 98147156 28009225 20595451 13286870 6962323 9023196 2471999
2016-08-25 13:09:57 1078
原创 神经网络预测
P = x';T = y';[P1,ps] = mapminmax(P);[T1,ps2] = mapminmax(T);net=newff(minmax(P),[10,1],{'tansig','purelin'},'traingda');net.trainParam.goal=0.001;net.trainParam.show=20;net.trainParam.epochs=50
2016-08-25 13:07:41 1840 1
原创 主成分分析法的matlab实现
%==========方法1:求标准化后的协差矩阵,再求特征根和特征向量=================%标准化处理[p,n]=size(X);for j=1:n mju(j)=mean(X(:,j)); sigma(j)=sqrt(cov(X(:,j)));endfor i=1:p for j=1:n Y(i,j)=(X(i,j)-mju(j))
2016-06-20 23:25:54 7383 2
原创 主成分回归
function [coeffs2] = PCR(x,y)%*******************************************************% This programme is designed by Zihao Wang %% Version 1.0 completed in 2009,4,2 %
2016-06-20 22:44:31 6341 3
原创 蒙特卡洛方法实现收益率服从正态分布的价格序列
1.程序代码price0 = 10;%初始价格mu = 1.1^(1/250)-1;%预期年收益率为10%,mu为每日的收益率sigma = .30/sqrt(250);%预期年波动率为30%,每年250个交易日,预期日波动率为sigman = 250*2;%两年的随机价格price = randPrice(price0,mu,sigma,n);plot(price)2.randpric
2016-04-09 18:35:42 4931
原创 SPSS教程之生存分析的Cox回归模型(比例风险模型)
最近有同学问师兄,“最近我要做生存分析,可是我不太会,也不太懂,师兄能不能教教我”,好吧,今天开一贴,讲讲这个。有同样的问题的同学可以一起来看看,毕竟在临床、科研上,这方面知识还是很受用的。有什么想跟师兄讨论的,可以加师兄微信号:shixiongcoming,加我时,注意注明申请理由,如果申请理由是你的名字话,那你就会被师兄忽略掉。就这样吧。让我们开始征程。一、生存分析基本概念1、
2016-04-05 19:22:27 42215 3
原创 用蒙特卡罗方法计算区域面积以matlab实现
给定曲线y =2 – x2 和曲线y3 = x2,曲线的交点为:P1( – 1,1 )、P2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积。P=rand(10000,2);x=2*P(:,1)-1;y=2*P(:,2);II=find(y<=2-x.^2&y.^3>=x.^2);M=length(II);S=4*M/10000plot(x(II),y(II),'g.')
2016-04-05 17:57:48 20941 3
原创 作业成本法的matlab实现
%P训练网络的输入数据:N个案例,M个指标构成NxM矩阵; %T训练网络的输出数据:N个案例,K个指标构成NxK矩阵; %可以通过aa=xlsread(‘i:\testp.xls’) 将excel文件中数据读入 %这时只读入文件中数字,文字不读入 %也可以通过load 文本文件,给P,T赋值,但在建立网络前要将 %P,T转置,P=P’,T=T’; %可以将隐层神经元数目设为变量Nk,
2016-04-04 22:48:32 1171 2
原创 蒙特卡洛模拟法模拟资产走势以matlab实现
一 蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的
2016-04-03 16:18:37 12358
原创 TB函数
数学函数Abs: 返回参数的绝对值。 Acos: 返回参数的反余弦值。 Acosh: 返回参数的反双曲余弦值。 Asin: 返回参数的反正弦值。 Asinh: 返回参数的反双曲正弦值。 Atan: 返回参数的反正切值。 Atan2: 返回给定的X及Y坐标值的反正切值。 Atanh: 返回参数的反双曲正切值。 Ceiling: 将参数 Number 沿绝对值增大的方向,舍入为最接近的整
2016-01-12 19:37:05 3416
原创 层次分析法(AHP)的Matlab实现
层次分析法(AHP)的Matlab是实现clc;clear;A = [1 5 3 7 1/5 1 1/3 3 1/3 3 1 5 1/7 1/3 1/5 1];[m,n]=size(A); %获取指标个数RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];R=rank(A
2016-01-08 20:30:20 36637 8
原创 Matlab中Flipdim函数的运用
Flipdim(X,dim)函数是matlab中针对矩阵翻转变换的函数,其中X表示一个矩阵,dim指定翻转方式,dim为1,表示每一列进行逆序排列,2表示每一行进行逆序排列。另外matlab还提供了左右、上下、以及旋转90度直接利用的函数,如下:左右翻转:fliplr(x)上下翻转:flipud(x)旋转九十度:rot90(x) 在matlab可以在命令窗口中输入help flipdim以获
2015-11-29 19:57:45 5967
原创 matlab实现简单的if else 的语句
matlab实现简单的if else 的语句x = input('请输入 x=');if x ~= 0 y = sin(x)/x;else y = 1;endy
2015-09-27 17:11:42 52105
原创 matlab实现简单的交互式程序
matlab实现简单的交互式程序x = input('请输入圆的半径=');y = pi*x^2;m = pi*x*2;fprintf('圆的面积为%f,圆的周长为%f\n',y,m);
2015-09-20 00:33:30 7789
原创 matlab实现聚类分析
matlab实现聚类的分析X=[7.90 39.77 8.49 12.94 19.27 11.05 2.04 13.29; 7.68 50.37 11.35 13.3 19.25 14.59 2.75 14.87; 9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76; 9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35;
2015-09-18 23:59:29 4730 1
原创 分析appstore审核失败的真实案例及解决办法
分析AppStore审核失败的真实案例及解决办法App中设计的图标与Apple原生图标类似,Apple原生图标有专利保护,并且在Design Guideline里面规定,App的图标不能与Apple图标雷同,如iTunes,App Store, iPod等的图标。若出现雷同App将被拒。app的设置界面、按钮使用了类似iphone的操作方式以及icon的圆角设计 -> 重新设计…app的年龄设置太低
2015-08-31 09:38:01 2280
原创 让iosApp应用只支持横屏
让iosApp应用只支持横屏在AppDelegate.m文件中加上以下代码,让app只支持横屏 - (NSUInteger)application:(UIApplication *)application supportedInterfaceOrientationsForWindow:(UIWindow *)window{ return UIInterfaceOrientatio
2015-08-28 10:07:10 2037 2
原创 ios键盘不遮挡输入框
ios键盘不遮挡输入框优秀的第三方库IQKeyboardManager仓库地址https://github.com/hackiftekhar/IQKeyboardManager.gitpod ‘IQKeyboardManager’, ‘~> 3.2.4’在AppDelegate中导入,然后代码IQKeyboardManager *manager = [IQKeyboardManager s
2015-08-23 15:08:18 965
原创 python连接,操作pgsql
Python连接,操作PGSQL1.安装pythonMac上 brew install pythonlinux上 apt-get install python2.安装psycopg2在 https://pypi.python.org/pypi/psycopg2/下载psycopg2 2.6.1解压后进入文件夹psycopg2 2.6.1 输入命令 sudo python setup.p
2015-08-23 13:48:17 1916
原创 键盘收起
代理 //开始编辑输入框的时候,软键盘出现,执行此事件 -(void)textFieldDidBeginEditing:(UITextField *)textField{ CGRect frame=textField.frame; int offset =frame.origin.y+32-(self.view.frame.size.height-216.0)
2015-08-04 10:10:58 588
原创 This is python
PythonPython介绍Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/),是一种面向对象、直译式的计算机程序语言,具有近二十年的发展历史。它包含了一组功能完备的标准库,能够轻松完成很多常见的任务。它的语法简单,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。与Scheme、Ruby、Perl、Tcl等动态语言一样,Python具备垃圾回收功能,能
2015-08-04 10:06:44 982
原创 ios开发实用链接
[Github-iOS备忘 ]http://github.ibireme.com/github/list/ios/[登录注册]https://github.com/leanote/leanote-ios[iOS开发]http://www.cnblogs.com/kenshincui/[iOS应用架构,网络层设计方案]http://casatwy.com/iosying-yong-jia-gou
2015-07-23 14:16:26 691
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人