给大家安利一个深度学习服务器——AutoDL

一、背景

        现在是研二了,第一次听说AutoDL是研一刚开学,实验室的师兄推荐的,当时说AutoDL使用简单,还有学生认证可以便宜点使用。所以我就去注册了个账号,目前为止已经使用大约一年半,花了大约2000RMB,每次都是按量计费租的服务器,使用过4090、3090、3080,在学生认证的情况下会便宜一些。

二、使用教程(个人分享)

  1. 登录网址:AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL;注册并登录就行
  2. 登录后,点击右上角的“控制台”,再点击左边的“容器实例”,然后会显示已租有的服务器;
  3. 在以上第三张图的页面,点击左上角的“租用新实例”,然后就会看到以下页面,在这个页面里面选择“计费方式”(本人一般用按量计费)、“选择地区”(本人一般选北京A区)、“选择主机”;
  4. 选择完后页面向下滑,可以看到选择服务器的基础镜像等功能,本人目前只用过基础镜像,根据自己的实际要求选择就行;最后再点击下面的“立即创建”
  5. 创建好之后就可以在控制台的容器实例显示了。点击“开机”就可以使用了,另外如果只想用到这个机器但暂时不用里面的GPU,可以在”更多“里选择”无卡模式卡机“。
  6. 开机之后,就可以通过SSH连接来使用服务器了。本人通常使用的是MobaXTerm、Pycharm、FileZilla。

### 如何在 AutoDL服务器上运行深度学习代码 #### 创建并启动实例 为了能够在 AutoDL 上顺利执行深度学习任务,需先完成账户注册以及创建合适的计算资源。具体操作包括登录官网后按照指引完成账号建立流程;随后进入控制面板挑选适合的硬件配置来构建新的虚拟机实例[^1]。 #### 配置开发环境 一旦实例成功部署完毕,则要着手准备必要的软件依赖项。这通常涉及到安装特定版本的操作系统、Python解释器以及其他可能需要用到的数据科学库或框架。对于 PyCharm 用户而言,建议通过 SSH 连接方式将本地编辑器链接到远程主机上的工作区,从而实现无缝编码体验[^5]。 #### 文件传输与管理 借助像 Xftp 这样的工具可以方便快捷地把本地计算机里的项目文件同步上传至云端存储空间内。只需遵循官方文档给出的相关指导就能轻松掌握整个过程——从下载客户端应用程序直至最终建立起稳定可靠的 FTP/SFTP会话通道[^3]。 #### 启动 JupyterLab 或其他 IDEs 如果倾向于图形化交互式的编程模式的话,那么不妨考虑启用内置的支持 Web 浏览器访问的服务端应用比如 JupyterLab 。这样不仅能够享受到直观易懂的操作界面带来的便利之处,而且还能充分利用其丰富的插件生态体系进一步提升工作效率。 #### 开始训练模型 当一切准备工作都已就绪之后,便可以直接调用命令行接口提交作业指令给 GPU 加速卡来进行大规模矩阵运算处理了。值得注意的是,在此期间务必密切关注资源消耗情况以免造成不必要的浪费现象发生。 ```bash nohup python train.py > output.log & ``` 上述脚本展示了怎样利用 `nohup` 命令让 Python 脚本后台持续运行而不受终端关闭影响的同时将其标准输出重定向保存成日志文件以便后续查看分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值