一、AutoDL进行模型训练
1:在浏览器中搜索AutoDL,进去之后首先要注册,注册完成之后登录,这里注册登录就不放图了;

2:登录后进入主页;

3:在算力市场进行显卡租赁;

GPU数量:代表当前最多可租用的卡数;
4:比如我这边就租一个2080的;

点击蓝色的“一卡可租”;

我这边需要yolov5的训练,接下来有一个注意点;


如果租的卡是30以上的版本,PyTorch,最后的11.1一定要选11以上的版本;
5:点击立即创建;下面这个界面就代表机器运行起来了。

6:点击JupyterLab连接到服务器里;

7:把之前下载的yolo代码传上来;
两种上传方式:
(1)打开文件夹,把项目文件zip压缩包拖拽到左侧文件列表;
(2)
上传之后下面会显示一个进度条,等进度条加载完就上传成功;
8:在启动页打开终端,输入命令;

解压好了之后左侧文件列表会多出刚解压的文件;
9:进入文件夹;激活环境,之前选的基础镜像,默认把环境装好了,但是如果这里直接使用“conda activate base"来激活环境,他会提示我们没有初始化,所以先使用命令”conda init”进行初始化;
接下来我们退出这个终端,重新开启一个终端;


使用"cd 文件名"切换目录;
使用" pip install -r requirements.txt "就会自动把需要的包安装上;

下载安装包的过程比较慢;
如果这边报错,可以根据报错信息修改requirements.txt文件中的包的版本,一般对包版本限制没有很严格;修改完之后重新执行" pip install -r requirements.txt "这个命令;
10:接下来运行步骤就和在conda上执行文件是一样的命令。
如果是数据量比较大的项目,训练速度是非常快的;
训练完之后我们把训练结果最好还是传到本地去,但是在Jupyter里面我们无法把整个文件夹下载下来,只能一个一个下载,我们这里采用另一种方法,把要下载的文件打包:
使用命令"tar -cvf runs.tar.gz runs/",runs.tar.gz 这个"runs"是要压缩后生成的压缩包的名字,可以自己命名。runs/末尾的这一部分,是要压缩的文件路径,相对现在的路径来说的相对路径,这边也可以写成绝对路径。运行后会生成gz压缩文件,本地可以正常解压,和rar没有区别。
运行后左侧会显示这个文件,鼠标右键点击下载。
11:当资源训练完了之后,我们就可以点击关机。



1万+

被折叠的 条评论
为什么被折叠?



