codeforces 869C The Intriguing Obsession

       题意:有三坨小岛,分别有a,b,c个小岛,要求你连边,使得同个岛屿内的小岛若要联通,至少要经过三条边,求合法的方案数。

      首先不能通过一条边直接连接,说明了岛屿内部不能有边,

      其次不能通过两条边直接连接,说明了不能有一个点同时连接同一个岛屿的两个点,

      这样的话,我们就可以有以下的结论,只需要考虑两个岛屿互相直接的连边,最后三种不同连边方式(a->b,b->c,c->a)相乘即可,因为这样同一个岛屿内的点最短长度为3。

      接着我们考虑两个岛屿之间能怎么连边,首先,因为不能有一个点同时与另外一个岛屿的两个点相连,那么我们就可以通过从1到n枚举a岛有i个点与b岛相连,那么如果无序,那么就会产生c(a,i)*c(b,i)种不同的排列方式,又因为a岛与b岛的对应顺序不同,也会导致不同的连接方案,所以还会有i!种不同的连接方法,所以枚举每一个i,答案+=c(a,i)*c(b,i)*i!就可以得到a岛与b岛之间的连边数了。

      下附AC代码。

#include<stdio.h>
#define maxn 5005
typedef long long ll;
const ll mod=998244353;
int a,b,cc;
ll fac[maxn];
ll c[maxn][maxn];
ll solve(int x,int y)
{
	ll res=0;
	for(int i=0;i<=x && i<=y;i++)
		res=(res+(((fac[i]*c[x][i])%mod)*c[y][i])%mod)%mod;
	return res;
}
int main()
{
	scanf("%d%d%d",&a,&b,&cc);
	fac[0]=1;
	for(int i=1;i<=5000;i++)
	{
		fac[i]=(fac[i-1]*i)%mod;
		c[i][0]=1;c[i][i]=1;
		for(int j=1;j<=i-1;j++)
			c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
	}
	ll ans=1;
	ans=(ans*solve(a,b))%mod;
	ans=(ans*solve(b,cc))%mod;
	ans=(ans*solve(cc,a))%mod;
	printf("%I64d\n",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值