题意:有三坨小岛,分别有a,b,c个小岛,要求你连边,使得同个岛屿内的小岛若要联通,至少要经过三条边,求合法的方案数。
首先不能通过一条边直接连接,说明了岛屿内部不能有边,
其次不能通过两条边直接连接,说明了不能有一个点同时连接同一个岛屿的两个点,
这样的话,我们就可以有以下的结论,只需要考虑两个岛屿互相直接的连边,最后三种不同连边方式(a->b,b->c,c->a)相乘即可,因为这样同一个岛屿内的点最短长度为3。
接着我们考虑两个岛屿之间能怎么连边,首先,因为不能有一个点同时与另外一个岛屿的两个点相连,那么我们就可以通过从1到n枚举a岛有i个点与b岛相连,那么如果无序,那么就会产生c(a,i)*c(b,i)种不同的排列方式,又因为a岛与b岛的对应顺序不同,也会导致不同的连接方案,所以还会有i!种不同的连接方法,所以枚举每一个i,答案+=c(a,i)*c(b,i)*i!就可以得到a岛与b岛之间的连边数了。
下附AC代码。
#include<stdio.h>
#define maxn 5005
typedef long long ll;
const ll mod=998244353;
int a,b,cc;
ll fac[maxn];
ll c[maxn][maxn];
ll solve(int x,int y)
{
ll res=0;
for(int i=0;i<=x && i<=y;i++)
res=(res+(((fac[i]*c[x][i])%mod)*c[y][i])%mod)%mod;
return res;
}
int main()
{
scanf("%d%d%d",&a,&b,&cc);
fac[0]=1;
for(int i=1;i<=5000;i++)
{
fac[i]=(fac[i-1]*i)%mod;
c[i][0]=1;c[i][i]=1;
for(int j=1;j<=i-1;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
ll ans=1;
ans=(ans*solve(a,b))%mod;
ans=(ans*solve(b,cc))%mod;
ans=(ans*solve(cc,a))%mod;
printf("%I64d\n",ans);
}