题意:给定平面上的n个点,我们对于每一个能围成凸多边形的子集可以计算它的贡献,贡献为 2 的 (这个凸多边形边上及内部点的个数 - 围成凸多边形点的个数),求所有子集的贡献之和。n<=200。
我们可以先转化一下问题,考虑每一个凸多边形,2 的 (这个凸多边形边上及内部点的个数 - 围成凸多边形点的个数)就是在选了这个凸多边形的情况下,里面其他点任选,那么就是以这个凸多边形为凸包的方案数了。
想到这里问题就变成了给定一堆点求他们能构成凸包的方案数。
往正面想还是不好做,我们可以用所有的方案数减去不能构成凸包的方案数,不能构成凸包那么只有在选的点都在一条直线上或者为空集合或者为一个点才不合法。
会初中数学的人这时候都肯定会了,我们可以枚举每一条直线,用相似算出在直线的点的个数cnt,那么方案数就是2^cnt - n -1,即为至少选两个点构成这条直线的方案数了。不过我们还有一个更巧的方法,我们可以枚举在这条直线上的前两个点p1,p2,保证p1<p2,再算在这条直线上的其他点p 3~p cnt,保证p2<p3<p4,这样的话我们确定了前两个点,其他点就是任选了,所以方案树为2^(cnt-2),这样由于id递增保证了与之前斜率相同的直线不会冲突,便不用去重了。
啊,这么简单的转化考场上都没想到......
下附AC代码。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define maxn 205
using namespace std;
typedef long long ll;
const ll mod=998244353;
int n;
int x[maxn],y[maxn];
ll mypow[maxn];
int main()
{
scanf("%d",&n);
mypow[0]=1;
for(int i=1;i<=n;i++)
scanf("%d%d",&x[i],&y[i]),mypow[i]=(mypow[i-1]<<1)%mod;
ll ans=(mypow[n]-n-1+mod)%mod;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
int cnt=0;
for(int k=j+1;k<=n;k++)
{
if((x[i]-x[j])*(y[i]-y[k])==(x[i]-x[k])*(y[i]-y[j]))
cnt++;
}
ans=(ans-mypow[cnt]+mod)%mod;
}
}
printf("%lld\n",ans);
}
Especially For U
By ZRX