【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

本文介绍了图论中的最小生成树概念,通过实例阐述了Prim算法和Kruskal算法的基本思想及应用,帮助理解如何在带权图中找到连接所有顶点的最小成本路径。
摘要由CSDN通过智能技术生成

本节纲要

  • 什么是图(network)
  • 什么是最小生成树 (minimum spanning tree)
  • 最小生成树的算法

什么是图(network)?

这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由**“顶点”和“边”组成的抽象网络。在各个“顶点“间可以由”边“**连接起来,使两个顶点间相互关联起来。图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图:

为了更好地说明问题,下面我们看一个比较老套的通信问题:

在各大城市中建设通信网络,如下图所示,每个圆圈代表一座城市,而边上的数字代表了建立通信连接的价格。那么,请问怎样才能以最小的价格使各大城市能直接或者间接地连接起来呢?

我们需要注意两点:

  • 最小的价格
  • 各大城市可以是直接或者间接相连的

稍稍留心可以发现,题目的要求是,城市只需要直接或者间接相连,因此,为了节省成本,我们稍稍优化一下上述方案如下:

可以看到,我们砍掉了原先在AD,BE之间的两条道路,建设价格自然就降下来了。当然这个方案也是符合我们题目的要求的。按照国际惯例,这里要说蛋是了。上面的实例由于数据很简单,优化的方案很easy就看出来了。但在实际中,数据量往往是非常庞大的。所以,我们更倾向于设计一种方法,然后利用计算机强大的运算能力帮我们处理这些数据得出最优的方案。
那么,针对上述问题,我们一起来看看如何应用图的相关知识来实现吧。

什么是最小生成树(minimum spanning tree)

为了直观,还是用图片给大家解释一下:

  • 对于一个图而言,它可以生成很多树,如右侧图2,图3就是由图1生成的。

  • 从上面可以看出生成树是将原图的全部顶点以最少的边连通的子图,对于有n个顶点的连通图,生成树有n-1条边,若边数小于此数就不可能将各顶点连通,如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值