递归排序:递归做为一种算法在程序设计语言中广泛应用。在代码的世界中,一个程序如果调用自身,那它就是递归的。 更直接地说,递归就是把规模大的问题转化为规模小的相似的子问题来解决。也就是我们将一整个完整的数组进行分割成很多个只存在一个元素的小数组。
在实际过程中,一个函数不可能是无限重复调用的,也就是不可能无限递归的,它需要一个明确的终止调节来避免造成程序的死循环。在当你终止了这个递归调用的时候,你应该清楚你需要做什么或者说你必须要去做点什么,不然我们这个递归并没有什么意义。
递归是通过方法自身调用自己,而方法的调用是需要时间和空间的,因此这也导致了效率的降低
Merge方法,这里进行对数组的分割,并在return进行递归操作
//当数组长度小于2时就跳出
if (array.Length < 2)
return array;
// 数组分两段
int mid = array.Length / 2;
// 初始化左右两边的数组
int[] left = new int[mid];
int[] right = new int[array.Length - mid];
for (int i = 0; i < array.Length; i++)
{
// 数组平分,将i小于mid的索引都赋给左数组,大于mid的索引都赋给右数组
if (i < mid)
{
left[i] = array[i];
}
else
{
right[i - mid] = array[i];
}
}
// 这里是先将这些数组进行递归操作,先使数组的长度小于2之后再调用StartArray
return StartArray(Merge(left), Merge(right));
StartArray方法,是当Merge结束了递归之后我们所需要进行的操作,就是将每个小数组进行大小的比较,然后用一个新数组来接收这些值,从而达到排序的要求
// 先准备一个数组,长度是左数组加右数组
int[] arr = new int[LeftArray.Length + RightArray.Length];
int LeftIndex = 0; // 左数组索引
int RightIndex = 0; // 右数组索引
for (int i = 0; i < arr.Length; i++)
{
// 左边数组放完了,就直接给右边
if (LeftIndex >= LeftArray.Length)
{
arr[i] = RightArray[RightIndex];
RightIndex++;
}
// 右边数组放完了,就直接放左边
else if (RightIndex >= RightArray.Length)
{
arr[i] = LeftArray[LeftIndex];
LeftIndex++;
}
// 数组值比较,小的放左,大的放右
else if (LeftArray[LeftIndex] < RightArray[RightIndex])
{
// 已经将一个元素放入左边数组,所以索引应该相应的加1
arr[i] = LeftArray[LeftIndex];
LeftIndex++;
}
else
{
arr[i] = RightArray[RightIndex];
RightIndex++;
}
}
// 获得的新数组,直接返回出来
return arr;
上面为代码方法的片段,下面这里放入完整的demo,可供参考
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace recursion_递归排序
{