Spark机器学习算法之KMeans代码+图文讲解(入门)

本文介绍了Spark的KMeans聚类算法,包括概念、数据准备、实现思路和代码实现。通过实例操作展示了如何加载数据、设置参数、执行聚类并评估结果。还提供了完整代码的下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.KMeans概念

       KMeans基于划分的聚类方法。给定数据样本集Sample和应该划分的类书K,对样本数据Sample进行聚类,最终形成K个聚类,其相似的度量是某条数据与中心点的“距离”(距离可分为绝对距离、欧氏距离、闵可夫斯基距离。这里说的距离是欧式距离,欧氏距离也称欧几里得距离,它是在m维空间中两个点之间的真实距离)。

2.KMeans算法实例操作

2.1 数据准备

      从官网下载源码时在data文件夹下有mllib文件夹,里面有kmeans_data.txt,内容为:
0.0 0.0 0.0
0.1 0.1 0.1
0.2 0.2 0.2
9.0 9.0 9.0
9.1 9.1 9.1
9.2 9.2 9.2

2.2实现思路

1.设置运行环境;

2.装载kmeans_data.txt数据集;

3.将数据集聚类(聚成2个类),进行20次迭代计算,形成数据模型;
4.在控制台打印数据模型的两个中心点;
5.使用误差平方和评估数据模型;
6.交叉评估1,只返回结果;
7.交叉评估2,返回数据集和结果。

3.用代码说话

     1.设置运行环境

val conf = new SparkConf().setAppName("Kmeans").setMaster("local")
val sc = new SparkContext(conf)

    2.装载数据集


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值