记该数为a,a的平方根记为x,则√a=x,写为x^2=a,
f(x)=x^2-a,那么求方根的问题就转化为求f(x)在x轴交点的问题;
若F(x)为f(x)的原函数,F'(x)=f(x)=x^2-a=0,就是求F(x)极值点的问题了(这样就转化到梯度下降上去了)
因此代码可以这样写:
import math if __name__ == "__main__": learning_rate = 0.01 for a in range(1,100): cur = 0 for i in range(1000): cur -= learning_rate*(cur**2 - a) print(' %d的平方根(近似)为:%.8f,真实值是:%.8f' % (a, cur, math.sqrt(a)))
关于python里 % 的用法,参照 https://www.cnblogs.com/vamei/archive/2013/03/12/2954938.html
部分结果为:
1的平方根(近似)为:1.00000000,真实值是:1.00000000
2的平方根(近似)为:1.41421356,真实值是:1.41421356
3的平方根(近似)为:1.73205081,真实值是:1.73205081
4的平方根(近似)为:2.00000000,真实值是:2.00000000
5的平方根(近似)为:2.23606798,真实值是:2.23606798
6的平方根(近似)为:2.44948974,真实值是:2.44948974
7的平方根(近似)为:2.64575131,真实值是:2.64575131
8的平方根(近似)为:2.82842712,真实值是:2.82842712
9的平方根(近似)为:3.00000000,真实值是:3.00000000
10的平方根(近似)为:3.16227766,真实值是:3.16227766