Tensorflow之keras模型建立与训练

       在 TensorFlow 中,推荐使用Keras( tf.keras)构建模型。Keras 是一个广为流行的高级神经网络 API,简单、快速而不失灵活性,现已得到TensorFlow的官方内置和全面支持。
       Keras有两个重要的概念:模型(Model)和层(Layer)。层将各种计算流程和变量进行了封装(例如基本的全连接层,CNN的卷积层、池化层等),而模型则将各种层进行组织和连接,并封装成 一个整体,描述了如何将输入数据通过各种层以及运算而得到输出。在需要模型调用的时候,使用y_pred =  model(X) 的形式即可。

 下面开始用一个简单的线性模型y_pred=a*X+b来讲解吧。

import tensorflow as tf

x=tf.constant([[1.0,2.0,3.0],[4.0,5.0,6.0]])
y=tf.constant([[10.0,20.0]])

class Linear(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.dense=tf.keras.layers.Dense(
            units=1,
            activation=None,
            kernel_initializer=tf.zeros_initializer(),
            bias_initializer=tf.zeros_initializer()
        )

    def call(self,input):
        output=self.dense(input)
        return output

if __name__=="__main__":
    model=Linear()
    optimizer=tf.keras.optimizers.SGD(learning_rate=0.01)
    for i in range(100):
        with tf.GradientTape() as tape:
            y_pred=model(x)
            loss=tf.reduce_mean(tf.square(y_pred-y))
        grads=tape.gradient(loss,model.variables)
        optimizer.apply_gradients(grads_and_vars=zip(grads,model.variables))
    print(model.variables)

结果如下所示:

[<tf.Variable 'linear/dense/kernel:0' shape=(3, 1) dtype=float32, numpy=
array([[-2.5728545 ],
       [ 0.47581893],
       [ 3.524492  ]], dtype=float32)>, <tf.Variable 'linear/dense/bias:0' shape=(1,) dtype=float32, numpy=array([3.048674], dtype=float32)>] 

 tf.keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros')

units,第一个参数,输出的单元个数

activation,第二个参数是激活函数

kernel_initializer :卷积核初始化,

bias_initializer :偏差值初始化,

 apply_gradients则是更细梯度以及模型参数。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值