题目描述
小A打算开始炼NOI元丹(什么鬼),据说吃了可以提高NOI时的成绩。
是这么练的。元丹有三种元核,’N’,’O’,’I’。现有很多个这样原核,按顺序排成一行。炼元丹时,从左往右分别挑出’N’,’O’,’I’三个原核吞下。
现在他关心,有几种服用方式……且慢!
他觉得服用方式太少,以至于不能成仙。所以他可以通过某个途径,得到’N’,’O’,’I’的三种原核中的任意一个,至于哪一种由他决定。然后他将获得这个原核的插入到这一排原核中的任意位置(包括最前最后)。
现在你要知道,新的元核序列中能有多少种’N’,’O’,’I’的取出方式。子串的字母并不要求连续。
输入输出格式
输入格式:
第一行,一个整数N,表示字符串的长度。
第二行,一行字符串,里面只有只有’N’,’O’,’I’三种字母。
输出格式:
表示出最多可以提炼出来的NOI元丹的方案种数。
输入输出样例
输入样例#1:
5
NOIOI
输出样例#1:
6
说明
样例解释
他可以获取一个N元核,加到最前面。
NNOIOI | NNOIOI | NNOIOI | NNOIOI | NNOIOI | NNOIOI
~ ~~ | ~ ~ ~ | ~ ~~ | ~~~ | ~~ ~ | ~ ~~
30%的数据N<=200
50%的数据N<=2000
100%的数据3<=N<=100000
枚举o,用前缀和可知n和i的个数。
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,s[N][3];
long long ans,res,tmp;
char ch[N];
int main()
{
scanf("%d%s",&n,ch+1);
for(int i=1;i<=n;i++)
{
s[i][0]=s[i-1][0],s[i][1]=s[i-1][1],s[i][2]=s[i-1][2];
if(ch[i]=='N')
s[i][0]++;
else if(ch[i]=='O')
s[i][1]++;
else
s[i][2]++;
}
for(int i=1;i<=n;i++)
if(ch[i]=='O')
ans+=(long long)s[i][0]*(s[n][2]-s[i][2]);
tmp=0;
for(int i=1;i<=n;i++)//n
if(ch[i]=='O')
tmp+=(long long)(s[n][2]-s[i][2]);
if(tmp>res)
res=tmp;
tmp=0;
for(int i=1;i<=n;i++)//i
if(ch[i]=='O')
tmp+=(long long)s[i][0];
if(tmp>res)
res=tmp;
tmp=0;
for(int i=1;i<=n;i++)//o
{
tmp=(long long)s[i][0]*(s[n][2]-s[i][2]);
if(tmp>res)
res=tmp;
}
printf("%lld\n",ans+res);
return 0;
}