描述
桌面上放了N个平行于坐标轴的矩形,这N个矩形可能有互相覆盖的部分,求它们组成的图形的面积。
格式
输入格式
输入第一行为一个数N(1≤N≤100),表示矩形的数量。下面N行,每行四个整数,分别表示每个矩形的左下角和右上角的坐标,坐标范围为–10^8到10^8之间的整数。
输出格式
输出只有一行,一个整数,表示图形的面积。
样例1
样例输入1[复制]
31 1 4 32 -1 3 24 0 5 2
样例输出1[复制]
10
今天模拟赛的t1,
说实话,真不是太水。
考虑矩形的边把平面分成了许多个小矩形,判断这些小矩形是否存在。
做一个似乎是离散化的东西,之后模拟。
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;
int n;
long long ans,x[205],y[205];
struct node
{
long long x1,y1,x2,y2;
}a[105];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld%lld%lld%lld",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2);
x[2*i-1]=a[i].x1,x[2*i]=a[i].x2;
y[2*i-1]=a[i].y1,y[2*i]=a[i].y2;
}
sort(x+1,x+2*n+1);
sort(y+1,y+2*n+1);
for(int i=1;i<=2*n-1;i++)
for(int j=1;j<=n*2-1;j++)
{
bool flg=0;
for(int k=1;k<=n;k++)
if(a[k].x1<=x[i]&&a[k].x2>=x[i+1]&&a[k].y1<=y[j]&&a[k].y2>=y[j+1])
{
flg=1;
break;
}
if(flg)
ans+=(x[i+1]-x[i])*(y[j+1]-y[j]);
}
printf("%lld\n",ans);
return 0;
}