BZOJ 1726 [Usaco2006 Nov]Roadblocks第二短路

Description

贝茜把家搬到了一个小农场,但她常常回到FJ的农场去拜访她的朋友。贝茜很喜欢路边的风景,不想那么快地结束她的旅途,于是她每次回农场,都会选择第二短的路径,而不象我们所习惯的那样,选择最短路。 贝茜所在的乡村有R(1<=R<=100,000)条双向道路,每条路都联结了所有的N(1<=N<=5000)个农场中的某两个。贝茜居住在农场1,她的朋友们居住在农场N(即贝茜每次旅行的目的地)。 贝茜选择的第二短的路径中,可以包含任何一条在最短路中出现的道路,并且,一条路可以重复走多次。当然咯,第二短路的长度必须严格大于最短路(可能有多条)的长度,但它的长度必须不大于所有除最短路外的路径的长度。

Input

* 第1行: 两个整数,N和R,用空格隔开

* 第2..R+1行: 每行包含三个用空格隔开的整数A、B和D,表示存在一条长度为 D(1 <= D <= 5000)的路连接农场A和农场B

Output

* 第1行: 输出一个整数,即从农场1到农场N的第二短路的长度

Sample Input

4 4
1 2 100
2 4 200
2 3 250
3 4 100


Sample Output

450

输出说明:

最短路:1 -> 2 -> 4 (长度为100+200=300)
第二短路:1 -> 2 -> 3 -> 4 (长度为100+250+100=450)

HINT

Source

Gold


挺好的一道图论题。
第一次窝以为和洛谷 玛利亚那道题差不多,结果拿了50分,就苟且地抄了题解。


解法一:

在spfa中更新,有三种情况,注意细节(似乎较容易出错)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N=5005;
const int M=100005;
int n,m,cnt,dis1[N],dis2[N],hd[N];
bool inq[N];
queue<int>q;
struct edge
{
    int to,nxt,val;
}v[2*M];
void addedge(int x,int y,int z)
{
    ++cnt;
    v[cnt].to=y;
    v[cnt].nxt=hd[x];
    v[cnt].val=z;
    hd[x]=cnt;
}
int main()
{
    scanf("%d%d",&n,&m);
    while(m--)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z),addedge(y,x,z);
    }
    memset(dis1,0x3f,sizeof(dis1));
    memset(dis2,0x3f,sizeof(dis2));
    dis1[1]=0;
    inq[1]=1;
    q.push(1);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        inq[u]=0;
        for(int i=hd[u];i;i=v[i].nxt)
        {
            bool flg=0;
            if(dis1[v[i].to]>dis1[u]+v[i].val)
            {
                dis2[v[i].to]=min(dis1[v[i].to],dis2[u]+v[i].val);
                dis1[v[i].to]=dis1[u]+v[i].val;
                flg=1;
            }
            else if(dis1[v[i].to]<dis1[u]+v[i].val&&dis2[v[i].to]>dis1[u]+v[i].val)
            {
                dis2[v[i].to]=dis1[u]+v[i].val;
                flg=1;
            }
            else if(dis1[v[i].to]==dis1[u]+v[i].val&&dis2[v[i].to]>dis2[u]+v[i].val)
            {
                dis2[v[i].to]=dis2[u]+v[i].val;
                flg=1;
            }
            if(flg&&!inq[v[i].to])
            {
                inq[v[i].to]=1;
                q.push(v[i].to);
            }
        }
    }
    printf("%d\n",dis2[n]);
    return 0;
}


解法二:

正反两次spfa,枚举中间的一条边(因为最多只可能有一条边与最短路不同),或一条边走了两次。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N=5005;
const int M=100005;
const int inf=1e9+7;
int n,m,ans,mn,cnt=1,hd[N],dis1[N],dis2[N];
bool inq[N];
queue<int>q;
struct edge
{
	int to,nxt,val;
}v[2*M];
void addedge(int x,int y,int z)
{
	++cnt;
	v[cnt].to=y;
	v[cnt].nxt=hd[x];
	v[cnt].val=z;
	hd[x]=cnt;
}
void spfa(int s,int *dis)
{
	memset(dis,0x3f,N*sizeof(int));
	dis[s]=0;
	inq[s]=1;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		inq[u]=0;
		for(int i=hd[u];i;i=v[i].nxt)
			if(dis[v[i].to]>dis[u]+v[i].val)
			{
				dis[v[i].to]=dis[u]+v[i].val;
				if(!inq[v[i].to])
				{
					inq[v[i].to]=1;
					q.push(v[i].to);
				}
			}
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	while(m--)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		addedge(x,y,z),addedge(y,x,z);
	}
	spfa(1,dis1);
	spfa(n,dis2);
	ans=inf;
	mn=dis1[n];
	for(int i=2;i<=cnt;i++)
	{
		int u=min(dis1[v[i].to]+dis2[v[i^1].to],dis1[v[i^1].to]+dis2[v[i].to])+v[i].val;
		if(u!=mn&&u<ans)
			ans=u;
	}
	for(int i=1;i<=n;i++)
		for(int j=hd[i];j;j=v[j].nxt)
			ans=min(ans,dis1[i]+dis2[i]+2*v[j].val);
	printf("%d\n",ans);
	return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的径基础上加入新的边构成的新径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值