Description
随着新版百度空间的下线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿。
给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度。绿豆蛙从起点出发,走向终点。
到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K 。
现在绿豆蛙想知道,从起点走到终点的所经过的路径总长度期望是多少?
Input
第一行: 两个整数 N M,代表图中有N个点、M条边
第二行到第 1+M 行: 每行3个整数 a b c,代表从a到b有一条长度为c的有向边
Output
从起点到终点路径总长度的期望值,四舍五入保留两位小数。
Sample Input
4 4
1 2 1
1 3 2
2 3 3
3 4 4
1 2 1
1 3 2
2 3 3
3 4 4
Sample Output
7.00
HINT
对于100%的数据 N<=100000,M<=2*N
Source
窝记得这是一年前做的题,然而现在已经一脸懵逼。
这是一道期望dp题,
求从1到n的期望。
设dp[i]表示从i到n的期望。
我们只知道dp[n]=0;
对于一条边u->v,dp[u]是可以从dp[v]推出来的,所以需要反向建图。
状态转移方程比较简单,就不写了,具体过程类似于拓扑排序。
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N=100005;
int n,m,cnt,w[N],du[N],hd[N];
double dp[N];
struct edge
{
int to,nxt,val;
}v[4*N];
queue<int>q;
void addedge(int x,int y,int z)
{
++cnt;
v[cnt].to=y;
v[cnt].nxt=hd[x];
v[cnt].val=z;
hd[x]=cnt;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
addedge(y,x,z);
w[x]++,du[x]++;
}
q.push(n);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=hd[u];i;i=v[i].nxt)
{
du[v[i].to]--;
dp[v[i].to]+=(v[i].val+dp[u])/w[v[i].to];
if(!du[v[i].to])
q.push(v[i].to);
}
}
printf("%.2f\n",dp[1]);
return 0;
}