BZOJ 2301 [HAOI2011]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Source

都是抄的,伤心。
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;
const int N=50005;
int T,tot,l=50000,p[N];
bool vis[N];
long long a,b,c,d,k,miu[N],sum[N];
long long query(long long n,long long m)
{
    n/=k,m/=k;
    long long res=0,nxt;
    for(long long i=1;i<=min(n,m);i=nxt+1)
    {
        nxt=min(n/(n/i),m/(m/i));
        res+=(n/i)*(m/i)*(sum[nxt]-sum[i-1]);
    }
    return res;
}
int main()
{
    miu[1]=1;
    for(int i=2;i<=l;i++)
    {
        if(!vis[i])
            p[++tot]=i,miu[i]=-1;
        for(int j=1;j<=tot&&p[j]*i<=l;j++)
        {
            vis[p[j]*i]=1;
            if(i%p[j]==0)
            {
                miu[p[j]*i]=0;
                break;
            }
            miu[p[j]*i]=-miu[i];
        }
    }
    for(int i=1;i<=l;i++)
        sum[i]=sum[i-1]+miu[i];
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
        printf("%lld\n",query(b,d)-query(a-1,d)-query(b,c-1)+query(a-1,c-1));
    }
    return 0;
}


发布了510 篇原创文章 · 获赞 12 · 访问量 18万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览