COGS 727. [网络流24题] 太空飞行计划

【问题描述】
W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合 E ={ E 1 , E 2 ,…, E m },和进行这些实验需要使用的全部仪器的集合 I ={  I 1 I 2 ,…, I }。实验 E 需要用到的仪器是 I 的子集 R j I 。配置仪器 I 的费用为 c 美元。实验 E 的赞助商已同意为该实验结果支付 p 美元。W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。
【编程任务】
对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。
【数据输入】
第1行有2个正整数m和n(m,n <= 100)。m是实验数,n是仪器数。接下来的m行,每行是一个实验的有关数据。第一个数赞助商同意支付该实验的费用;接着是该实验需要用到的若干仪器的编号。最后一行的n个数是配置每个仪器的费用。
【结果输出】
第1行是实验编号;第2行是仪器编号;最后一行是净收益。
【输入文件示例】shuttle.in
2 3
10 1 2
25 2 3
5 6 7
【输出文件示例】shuttle.out
1 2
1 2 3
17

这是一个最大权闭合子图,转载题解。

  1. 对于每个实验,连一条从s到实验,边权为实验利益的边。

  2. 对于每个需要的仪器,连一条从实验到器材,边权为INF的边。

  3. 对于每个仪器,连一条从器材到t,边权为器材耗费的边。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N=105;
const int inf=1e9+7;
int m,n,s,t,ans,cnt=1,hd[2*N],pre[2*N],c[N];
bool d[N];
queue<int>q;
struct edge
{
	int to,nxt,f;
}v[2*N*N+4*N];
void addedge(int x,int y,int z)
{
	v[++cnt].to=y;
	v[cnt].f=z;
	v[cnt].nxt=hd[x];
	hd[x]=cnt;
}
bool bfs()
{
	memset(pre,0,sizeof(pre));
	pre[s]=1;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		for(int i=hd[u];i;i=v[i].nxt)
			if(v[i].f&&!pre[v[i].to])
			{
				pre[v[i].to]=pre[u]+1;
				q.push(v[i].to);
			}
	}
	return pre[t];
}
int dfs(int u,int lft)
{
	if(u==t||lft==0)
		return lft;
	int r=lft;
	for(int i=hd[u];i;i=v[i].nxt)
		if(r&&v[i].f&&pre[v[i].to]==pre[u]+1)
		{
			int w=dfs(v[i].to,min(r,v[i].f));
			v[i].f-=w,v[i^1].f+=w,r-=w;
			if(!r)
				return lft;
		}
	if(lft==r)
		pre[u]=0;
	return lft-r;
}
int main()
{
	freopen("shuttle.in","r",stdin);
	freopen("shuttle.out","w",stdout);
	scanf("%d%d",&m,&n);
	s=0,t=n+m+1;
	for(int i=1;i<=m;i++)
	{
		int x;
		scanf("%d",&x);
		ans+=x;
		addedge(s,i,x),addedge(i,s,0);
		char ch=getchar();
		while(ch!='\n'&&ch!='\r')
		{
			scanf("%d",&x);
			addedge(i,x+m,inf),addedge(x+m,i,0);
			ch=getchar();
		}
	}
	for(int i=1;i<=n;i++)
	{
		int x;
		scanf("%d",&x);
		addedge(i+m,t,x),addedge(t,i+m,0);
	}
	while(bfs())
		ans-=dfs(s,inf);
	for(int i=1;i<=m;i++)
		if(pre[i])
			printf("%d ",i);
	printf("\n");
	for(int i=1;i<=n;i++)
		if(pre[i+m])
			printf("%d ",i);
	printf("\n%d\n",ans);
	return 0;
}


以下是将代码修改为cot平滑的方法: 1. 首先,需要使用边界角的cot权重计算每个顶点的权重。 2. 然后,使用cot权重对每个顶点的邻域点进行加权计算,得到平滑后的坐标。 3. 最后,根据平滑后的坐标更新每个顶点的位置。 修改后的代码如下: float smooth() { float err = -1; cogs.clear(); v_end = mesh.vertices_end(); //cot平滑 for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it) { cog[0] = cog[1] = cog[2] = weight_sum = 0.0; for (vv_it = mesh.vv_iter(*v_it); vv_it.is_valid(); ++vv_it) { double cot_weight = 0.0; MyMesh::HalfedgeHandle heh = mesh.find_halfedge(*v_it, *vv_it); if (!mesh.is_boundary(heh)) { MyMesh::HalfedgeHandle prev_heh = mesh.prev_halfedge_handle(heh); MyMesh::HalfedgeHandle next_heh = mesh.next_halfedge_handle(heh); MyMesh::VertexHandle prev_vh = mesh.to_vertex_handle(prev_heh); MyMesh::VertexHandle next_vh = mesh.to_vertex_handle(next_heh); MyMesh::Point prev_p = mesh.point(prev_vh); MyMesh::Point curr_p = mesh.point(*v_it); MyMesh::Point next_p = mesh.point(next_vh); double cot_alpha = cot(prev_p - curr_p, next_p - curr_p); double cot_beta = cot(curr_p - prev_p, next_p - prev_p); cot_weight = cot_alpha + cot_beta; } cog += cot_weight * mesh.point(*vv_it); weight_sum += cot_weight; } cogs.push_back(cog / weight_sum); } for (v_it = mesh.vertices_begin(), cog_it = cogs.begin(); v_it != v_end; ++v_it, ++cog_it) { if (!mesh.is_boundary(*v_it)) { MyMesh::Point p = mesh.point(*v_it); err = max(err, (p - *cog_it).norm()); mesh.set_point(*v_it, *cog_it); } } return err; } 其中cot函数的定义如下: double cot(MyMesh::Point a, MyMesh::Point b) { return dot(a, b) / cross(a, b).norm(); } 注意,这里使用的是边界角的cot权重,因此在计算cot权重时需要判断当前边是否为边界。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值