第四题 :测试次数
x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。
如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。
特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。
如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n
为了减少测试次数,从每个厂家抽样3部手机参加测试。
某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
请填写这个最多测试次数。
注意:需要填写的是一个整数,不要填写任何多余内容。
答案:19
思路:本题的原型是双蛋模型,具体解释可以看B站李永乐老师的视频av96214853
//dp[i][j]表示用i个鸡蛋测试j层的次数;
#include<iostream>
using namespace std;
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
int main(){
int dp[4][1100];
for(int i = 1; i <= 1000; i++)
dp[1][i] = dp[2][i]=dp[3][i]=i;
for (int i = 2; i <= 3; i++) {
for (int j=1; j <= 1000; j++){
for (int k = 1; k < j; k++)
dp[i][j] = min(dp[i][j],max(dp[i - 1][k - 1],dp[i][j - k])+1);
}
}
cout<<dp[3][1000]<<endl;
return 0;
}