第八题:摆动序列
【问题描述】
如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a2i < a2i-1, a2i+1 > a2i。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
【输入格式】
输入一行包含两个整数 m,n。
【输出格式】
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
【样例输入】
3 4
【样例输出】
14
【样例说明】
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
【评测用例规模与约定】
对于 20% 的评测用例,1 ≤ n, m ≤ 5
对于 50% 的评测用例,1 ≤ n, m ≤ 10
对于 80% 的评测用例,1 ≤ n, m ≤ 100
对于所有评测用例,1 ≤ n, m ≤ 1000
【思路】
深搜:
如果当前为奇数项,则 i 从上一项(即偶数项)的数值+1 开始遍历;
如果当前为偶数项,则 i 从1开始遍历;
【代码】
#include <iostream>
using namespace std;
int n, m, ans;
void dfs(int step, int x){
if(step == m){
ans ++;
ans %= 10000;
return;
}
if((step+1)%2==1){ //奇数项
for (int i = x + 1; i <= n; i ++) {
dfs(step+ 1, i);
}
}else{ //偶数项
for(int i = 1; i < x; i ++){
dfs(step + 1, i);
}
}
}
int main(){
cin >> m >> n;
dfs(0, 0);
cout << ans << endl;
return 0;
}