2020年十一届省赛蓝桥杯本科模拟赛第八题解 摆动序列

第八题:摆动序列

【问题描述】

如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a2i < a2i-1, a2i+1 > a2i。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。

【输入格式】
输入一行包含两个整数 m,n。
【输出格式】
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。

【样例输入】

3 4

【样例输出】

14

【样例说明】
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4

【评测用例规模与约定】
对于 20% 的评测用例,1 ≤ n, m ≤ 5
对于 50% 的评测用例,1 ≤ n, m ≤ 10
对于 80% 的评测用例,1 ≤ n, m ≤ 100
对于所有评测用例,1 ≤ n, m ≤ 1000

【思路】
深搜:
如果当前为奇数项,则 i 从上一项(即偶数项)的数值+1 开始遍历;
如果当前为偶数项,则 i 从1开始遍历;

【代码】

#include <iostream>
using namespace std;
int n, m, ans;
void dfs(int step, int x){
 if(step == m){
  ans ++;
  ans %= 10000;
  return;
 } 
 if((step+1)%2==1){ //奇数项 
  for (int i = x + 1; i <= n; i ++) {
   dfs(step+ 1, i);
  } 
 }else{   //偶数项 
  for(int i = 1; i < x; i ++){ 
   dfs(step + 1, i);
  }
 }
}
int main(){ 
 cin >> m >> n; 
 dfs(0, 0);
 cout << ans << endl;
 return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值