题意:
一颗树上,两种操作,一种问两点的距离,另一个问路上第k个节点编号
思路:
距离可以很简单地求,求第k个节点编号,我们可以把路径切成两段,一段是u到LCA,一段是LCA到v,那么我们看一下k属于哪一段,就能用常规的倍增去求那个点了
错误及反思:
代码:
#include<bits/stdc++.h>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int N = 10100;
struct EDGE{
int to,next,val;
}e[N*2];
int tot,n,T;
int point[N][20],val[N][20],depth[N],fi[N],fa[N],;
char ta[10];
void addedge(int x,int y,int z)
{
e[tot].to=y;
e[tot].val=z;
e[tot].next=fi[x];
fi[x]=tot++;
e[tot].to=x;
e[tot].val=z;
e[tot].next=fi[y];
fi[y]=tot++;
}
void init()
{
tot=0;
memset(fi,-1,sizeof(fi));
}
void dfs(int now,int fa,int de){
depth[now]=de;
point[now][0]=fa;
for(int i=fi[now];i!=-1;i=e[i].next)
if(e[i].to!=fa){
val[e[i].to][0]=e[i].val;
dfs(e[i].to,now,de+1);
}
}
void getlca()
{
for(int i=1;i<=14;i++){
for(int j=1;j<=n;j++){
point[j][i]=point[point[j][i-1]][i-1];
val[j][i]=val[j][i-1]+val[point[j][i-1]][i-1];
}
}
}
void solve(int a,int b){
if(depth[a]>depth[b])
swap(a,b);
int ans=0;
for(int i=14;i>=0;i--)
if(depth[point[b][i]]>=depth[a]){
ans+=val[b][i];
b=point[b][i];
}
if(a!=b){
for(int i=14;i>=0;i--){
if(point[a][i]!=point[b][i]){
ans+=val[a][i]+val[b][i];
a=point[a][i];
b=point[b][i];
}
}
}
if(a!=b) ans+=val[a][0]+val[b][0];
printf("%d\n",ans);
}
int lca(int a,int b){
if(depth[a]>depth[b])
swap(a,b);
for(int i=14;i>=0;i--)
if(depth[point[b][i]]>=depth[a])
b=point[b][i];
if(a==b) return a;
for(int i=14;i>=0;i--){
if(point[a][i]!=point[b][i]){
a=point[a][i];
b=point[b][i];
}
}
return point[a][0];
}
int main(){
scanf("%d",&T);
while(T--){
init();
scanf("%d",&n);
for(int i=0,u,v,w;i<n-1;i++){
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
}
dfs(1,1,1);
getlca();
while(scanf("%s",ta)&&ta[1]!='O'){
if(ta[1]=='I'){
int tb,tc;
scanf("%d%d",&tb,&tc);
solve(tb,tc);
}
else{
int tb,tc,k;
scanf("%d%d%d",&tb,&tc,&k);
int LCA=lca(tb,tc);
if(depth[tb]-depth[LCA]+1>=k){
k--;
int now=0;
while(k){
if(k&1) tb=point[tb][now];
k/=2;
now++;
}
printf("%d\n",tb);
}
else{
k-=depth[tb]-depth[LCA]+1;
k=depth[tc]-depth[LCA]-k;
int now=0;
while(k){
if(k&1) tc=point[tc][now];
k/=2;
now++;
}
printf("%d\n",tc);
}
}
}
}
}