论文地址:https://arxiv.org/abs/2303.15343v4
代码地址:https://github.com/google-research/big_vision
bib引用:
@misc{
zhai2023sigmoidlosslanguageimage,
title={
Sigmoid Loss for Language Image Pre-Training},
author={
Xiaohua Zhai and Basil Mustafa and Alexander Kolesnikov and Lucas Beyer},
year={
2023},
eprint={
2303.15343},
archivePrefix={
arXiv},
primaryClass={
cs.CV},
url={
https://arxiv.org/abs/2303.15343},
}
InShort
提出用于语言 - 图像预训练的Sigmoid损失函数(SigLIP),该函数相比传统Softmax损失函数,在内存效率、训练效率和小批量训练性能上具有优势。研究发现32k的批量大小在对比学习中接近最优,为语言 - 图像预训练研究提供了新方向。
- 研究背景:基于网络图像 - 文本对的对比预训练成为获取通用计算机视觉骨干网络的常用方法,标准做法是使用基于softmax的对比损失。本文提出用sigmoid损失替代,其计算更简单、内存效率更高,还能解耦批量大小与任务定义。
- 相关工作
- 对比学习中的sigmoid损失:此前有工作在无监督降维任务中提出类似sigmoid损失,但在对比图像 - 文本学习中,多数工作依赖基于softmax的InfoNCE损失。在监督分类中,sigmoid损失比softmax损失更有效、更稳健。
- 对比语言 - 图像预训练:CLIP和ALIGN应用softmax对比学习,使对比语言 - 图像预训练受到关注,后续研究将其应用于多种任务。此外,还有生成式语言 - 图像预训练等多种方法。
- 高效语言 - 图像预训练:LiT、FLIP等尝试提高预训练效率,但各有局限,如LiT需预训练骨干网络,FLIP牺牲质量。BASIC和LAION虽扩大批量大小,但也存在不足。
- 方法
- Softmax损失:通过对图像和文本嵌入进行归一化,最小化匹配对和不匹配对之间的差异,公式为 − 1 2 ∣ B ∣ ∑ i = 1 ∣ B ∣ ( l o g e t x i ⋅ y i ∑ j = 1 ∣ B ∣ e t x i ⋅ y j ⏞ i m a g e → t e x t s o t h a t + l o g e t x i ⋅ y i ∑ j = 1 ∣ B ∣ e t x j ⋅ y i ⏞ t e x t → i m a g e s o f t m a