SigLIP技术小结

paperhttps://arxiv.org/abs/2303.15343
githubhttps://github.com/google-research/big_vision
个人博客位置http://myhz0606.com/article/siglip

1 背景

CLIP[1]自提出以来在zero-shot分类、跨模态搜索、多模态对齐等多个领域得到广泛应用。得益于其令人惊叹的能力,激起了研究者广泛的关注和优化。

目前对CLIP的优化主要可以分为两大类:其一是如何降低CLIP的训练成本;其二是如何提升CLIP的performance。

对于第一类优化任务的常见思路有3种。1)优化训练架构,如LiT[2]通过freezen image encoder,单独训练text encoder来进行text 和image的对齐来加速训练;2)减少训练token,如FLIP[3]通过引入视觉mask,通过只计算非mask区域的视觉表征来实现加速(MAE[4]中的思路)。3)优化目标函数,如CatLIP[5]将caption转为class label,用分类任务来代替对比学习任务来实现加速。

对于第二类提升CLIP的performance最常用和有效的手段就是数据治理,即构建高质量、大规模、高多样性的图文数据,典型的工作如:DFN[6]。

SigLIP这篇paper提出用sigmoid loss来做图文对比训练。这个方案既能降低训练成本,在小batch下(低于32k)performance也优于传统方法。

2 Method

为了方便阐述,符号定义如下:

符号
image encoder f ( ⋅ ) f(\cdot) f()
text encoder g ( ⋅ ) g(\cdot) g()
image I I I
text T T T
mini-batch B = { ( I 1 , T 1 ) , ( I 2 , T 2 ) , ⋯   } \mathcal{B} = \{ (I_1, T_1), (I_2, T_2), \cdots \} B={(I1,T1),(I2,T2),}

对于经典的softmax-based优化目标InfoNCE,其核心思路是让positive的图文对的距离越近越好,让negative图文对的距离越远越好,计算公式如下:

− 1 2 ∣ B ∣ ∑ i = 1 ∣ B ∣ ( log ⁡ e t x i ⋅ y i ∑ j = 1 ∣ B ∣ e t x i ⋅ y j ⏞ i m a g e   → t e x t   s o f t m a x + log ⁡ e t x i ⋅ y i ∑ j = 1 ∣ B ∣ e t x j ⋅ y i ⏞ t e x t → i m a g e   s o f t m a x ) (1) -\frac { 1 } { 2 | \mathcal { B } | } \sum _ { i = 1 } ^ { | \mathcal { B } | } \left( \overbrace { \log \frac { e ^ { t \mathbf { x } _ { i } \cdot \mathbf { y } _ { i } } } { \sum _ { j = 1 } ^ { | \mathcal { B } | } e ^ { t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } } } } ^ { \mathrm { i m a g e \space \to t e x t \space s o f t m a x } } + \overbrace { \log \frac { e ^ { t \mathbf { x } _ { i } \cdot \mathbf { y } _ { i } } } { \sum _ { j = 1 } ^ { | \mathcal { B } | } e ^ { t \mathbf { x } _ { j } \cdot \mathbf { y } _ { i } } } } ^ { \mathrm { t e x t } \rightarrow \mathrm{image \, softmax} } \right) \tag{1} 2∣B1i=1B logj=1Betxiyjetxiyi image text softmax+logj=1Betxjyietxiyi textimagesoftmax (1)

其中: x i = f ( I i ) ∥ f ( I i ) ∥ 2    , \begin{array} { r } { \mathbf { x } _ { i } = \frac { f ( I _ { i } ) } { \| f ( I _ { i } ) \| _ { 2 } } \; , } \end{array} xi=f(Ii)2f(Ii), y i = g ( T i ) ∥ g ( T i ) ∥ 2 \mathbf { y } _ { i } = \frac { g ( T _ { i } ) } { \| g ( T _ { i } ) \| _ { 2 } } yi=g(Ti)2g(Ti)

InfoNCE的缺点

  • softmax的计算存在数值不稳定的问题,需要引入额外的trick保证softmax的计算稳定性。详情见附录。
  • 计算量大。softmax loss的非对称(asymmetry),需要做了两次normalization,即 ∑ j = 1 ∣ B ∣ e t x j ⋅ y i ≠ ∑ j = 1 ∣ B ∣ e t x i ⋅ y j \sum _ { j = 1 } ^ { | \mathcal { B } | } e ^ { t \mathbf { x } _ { j } \cdot \mathbf { y } _ { i } } \neq \sum _ { j = 1 } ^ { | \mathcal { B } | } e ^ { t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } } j=1Betxjyi=j=1Betxiyj 。并且计算稳定性的trick也需要引入额外的计算量。
  • 显存占用大,由于要计算normalize,需要维护一个很大的概率分布矩阵。假定batch size为32k,那么这个概率分布矩阵的大小为 32 k × 32 k 32k \times 32k 32k×32k

下面来看文本提出的sigmoid loss 。其定义如下:

− 1 ∣ B ∣ ∑ i = 1 ∣ B ∣ ∑ j = 1 ∣ B ∣ log ⁡ 1 1 + e z i j ( − t x i ⋅ y j + b ) ⏟ L i j (2) -\frac { 1 } { | \mathcal { B } | } \sum _ { i = 1 } ^ { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } \underbrace { \log \frac { 1 } { 1 + e ^ { z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b ) } } } _ { \mathcal { L } _ { i j } } \tag{2} B1i=1Bj=1BLij log1+ezij(txiyj+b)1(2)

从上式可见,Sigmoild loss将每对图文对独立看待。即分别将每对图文对做二分类。

  • ( I i , T i ) (I_i, T_i) (Ii,Ti)时为正例。
  • ( I i , T j , j ≠ i ) (I_i, T_{j, j\neq i}) (Ii,Tj,j=i)时为负例。

式子中, z i j z _ { i j } zij为图文对的标签,1表示是正例,-1表示是负例。直观来看,式(2)明显存在正负样本不均衡的问题,batch size为 ∣ B ∣ |\mathcal{B}| B时,正例数为 ∣ B ∣ |\mathcal{B}| B,负例数为 ∣ B ∣ 2 − ∣ B ∣ |\mathcal{B}|^ 2 - |\mathcal{B}| B2B。为了缓解正负样本不均衡,作者引入两个learnable parameter t , b t,b t,b来调节正负例的梯度,初始时 t ′ = log ⁡ 10 t'=\log 10 t=log10 b = − 10 b=-10 b=10。附录对这两个参数的作用机理进行了浅要分析。

在这里插入图片描述

多卡场景下,可以用式(3)的通信策略实现高效训练。

− 1 B ∑ d i = 1 D ⏟ A   ∀   d e v i c e   d i ∑ d j = 1 D ⏞ B : s w a p n e g s a c r o s s d e v i c e s ∑ i = b d i b ( d i + 1 ) ⏟ a l l l o c a l p o s i t i v e s ∑ j = b d j b ( d j + 1 ) ⏟ n e g s f r o m n e x t d e v i c e L i j ⏞ C :   p e r   d e v i c e   l o s s (3) -\frac{1}{\mathcal{B}} \underbrace{ \sum _ {d_i = 1} ^ {D} } _ {\mathbf{A} \, \forall \, \mathrm{device} \, d_i} \overbrace{ \sum _ {d_j = 1} ^ {D} }^{\substack{\mathbf{B:\,} \mathrm{swap\, negs} \\ \mathrm{across\, devices}}} \overbrace{ \underbrace{\sum_{i=bd_i}^{b(d_i + 1)}}_{ \substack{ \mathrm{all \, local} \\ \mathrm{ positives}}} \underbrace{\sum_{j=bd_j}^{b(d_j + 1)}}_{ \substack{ \mathrm{negs \, from} \\ \mathrm{next \, device}}} \mathcal{L}_{ij} }^{\mathbf{C:\,} \mathrm{per\, device \, loss}} \tag{3} B1Adevicedi di=1Ddj=1D B:swapnegsacrossdevicesalllocalpositives i=bdib(di+1)negsfromnextdevice j=bdjb(dj+1)Lij C:perdeviceloss(3)

在这里插入图片描述

sigmoid-based contrastive learning的理论说完了,下面从实验的角度分析sigmoid loss的一些特性。

3 Experiment

3.1 Setting

(一) 模型

作者将基于sigmoid loss训练的CLIP称为SigLIP(Sigmoid loss for Language-Image Pre-training), 将sigmoid loss和LiT[2]架构训练的CLIP称为SigLIT (sigmoid LiT)

(二) 评估指标

作者主要从以下2个指标来评估模型的性能

  • Imagenet的zero shot准确率
  • XM3600多语言数据集的zero shot跨模态搜索准确率。

(三)训练数据集

webLi[9]

3.2 The influence of batch size

在之前的研究表明[8]:对比学习的batch size越大,效果越好。但之前的研究受限成本,最大只研究到64k。这篇paper将batch size扩大到1M。结果表明,当batch size达到32k,继续扩大的收益就很低了,达到256k后,收益达到顶峰。随后根据上述经验,作者对比了sigmoid和softmax的scale up batch size的能力,有以下几点核心结论:

  • sigmoid loss相比softmax loss更节约显存。用sigmoid loss时,4张TPU-v4能够容纳4096个batch size,但若用softmax,batch size只能容纳2048。
  • 在小batch下(batch size低于32k)sigmoid-based明显优于softmax-based loss,随着batch size进一步增加,二者差距逐渐减少。

在这里插入图片描述

在这里插入图片描述

作者给出了2个微调经验

1)微调时image encoder不要引入weight-decay

2)增加batch size时,transformer的训练开始变得不稳定,通过设小beta2有助于huan jie。

在这里插入图片描述

3.3 The influence of positive and negative pairs ratio

对于sigmoid来说,它的loss是以pair为粒度计算的,positive和negative非常不平衡。以batch size ∣ B ∣ = 16 k |\mathcal{B}| = 16k B=16k为例(有16k个图文对),只有 16 k 16k 16k个positive samples,但有 16 k ∗ 16 k − 16 k = 16 k ( 16 k − 1 ) 16k * 16k - 16k = 16k(16k-1) 16k16k16k=16k(16k1)个negative samples,其positive和negative的比率约为 1 : 16 k 1:16k 1:16k

因此,有必要深入探究positive和negative的不平衡对模型的影响。得益于sigmoid loss(式2)以pair为粒度的计算方式,我们可以很方便的人为控制正负样本的比例。作者尝试了4种方式调控positive和negative的比例

  • Random: 通过随机mask掉negative sample,来保证positive和negative的占比
  • Hard:通过mask掉loss较低的negative sample ,来保证positive和negative的占比
  • Hard, matched pair:通过mask掉loss较低的negative的sample,来保证positive和negative的占比。由于上述mask的操作,模型的“pair seen”少,此实验通过增加iteration来保证”pair seen”和原始一致。(相当于常用的resample方法)
  • Easy:通过mask掉loss较高的negative sample,来保证positive和negative的占比。

作者在SigLIT上用进行以上四种mask out机制的实验。 ∣ B ∣ = 16 k |\mathcal{B}| = 16k B=16k,迭代 I t e r = 900 M \mathrm{Iter}=900M Iter=900M

在这里插入图片描述

结果表明:

  • 不做matched pair的情况下,用3种mask方式均会造成精度下降。影响程度:easy>random>hard。
  • Hard sample mining + matched pair有助于进一步提升模型性能。
  • 当正负样本的imbalance减弱时,learnable bias和pair的logit都在上升,说明了预设的learnable bias起到了积极的作用。

总体来看,得益于learnable temperature和learnable bias,sigmoid loss的正负样本不均衡基本不会导致模型性能下降。

文中对这两个超参数的初始值进行了进一步实验,结果如下。(可见引入合适的prior knowledge对提升模型performance非常有效)

在这里插入图片描述

3.4 Label noise robustness

作者进一步评估数据噪声对模型鲁棒性的影响。通过以下五种方法“污染”训练噪声:

  1. Image:以概率 p p p将图文对的图片用均匀噪声替换;
  2. Text:以概率 p p p将图文对的文本token序列用随机采样的等长token序列替换;
  3. Batch alignment: 随机将batch中的 p % p\% p%的sample的图文pair进行shuffle;
  4. Image & text: 同时进行1.和2.
  5. Image, text & batch: 同时进行3和4

从结果可见,sigmoid loss在“污染”数据的performance更好。

在这里插入图片描述

4 小结

sigmoid-based contrastive learning从经典的softmax-based contrastive learning的“pick the right class”转化为“rate this pair”。这个转化实现了compute efficient和memory efficient,并在实验中证明,siglip在小batch下(低于32k)更具优势。

5 参考文献

[1] Learning Transferable Visual Models From Natural Language Supervision

[2] LiT: Zero-Shot Transfer With Locked-Image Text Tuning

[3] Scaling Language-Image Pre-training via Masking

[4] Masked Autoencoders Are Scalable Vision Learners

[5] CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data

[6] Data Filtering Networks

[7] Representation Learning with Contrastive Predictive Coding

[8] Combined Scaling for Zero-shot Transfer Learning

[9] Pali: A jointly-scaled multilingual languageimage model.

6 附录

6.1 附录一:softmax的溢出问题

  • 解决上溢出问题

Softmax ( x i ) = exp ⁡ ( x i ) ∑ j = 1 N exp ⁡ ( x j ) = exp ⁡ ( x i ) / exp ⁡ ( x m a x ) ∑ j = 1 N exp ⁡ ( x j ) / exp ⁡ ( x m a x ) = exp ⁡ ( x i − x m a x ) ∑ j = 1 N exp ⁡ ( x j − x m a x ) (3) \begin{aligned} \text{Softmax}(x_{i}) &= \frac{\exp(x_i) }{ \sum_{j=1}^{N} \exp(x_j)} \\ &= \frac{\exp(x_i) / \exp{(x_{max})}}{ \sum_{j=1}^{N} \exp(x_j) / \exp{(x_{max})} } \\ &= \frac{\exp(x_i - x_{max})}{ \sum_{j=1}^{N} \exp(x_j - x_{max})} \end{aligned} \tag{3} Softmax(xi)=j=1Nexp(xj)exp(xi)=j=1Nexp(xj)/exp(xmax)exp(xi)/exp(xmax)=j=1Nexp(xjxmax)exp(xixmax)(3)

  • x m a x x_{max} xmax很大时,分子可能出现 0 0 0,当和 c r o s s   e n t r o p y \mathrm{cross \, entropy} crossentropy联用时,会出现 l o g ( 0 ) log(0) log(0),此时应当进行如下变形。

    log ⁡ s o f t m a x ( x i ) = log ⁡ ( exp ⁡ ( x i − x m a x ) ∑ j = 1 N exp ⁡ ( x j − x m a x ) ) = log ⁡ exp ⁡ ( x i − x m a x ) − log ⁡ ∑ j = 1 N exp ⁡ ( x j − x m a x ) = ( x i − x m a x ) − log ⁡ ∑ j = 1 N exp ⁡ ( x j − x m a x ) ⏟ > 1 (4) \begin{aligned} \log \mathrm{softmax}(x_i) &= \log \Bigr( {\frac{\exp(x_i - x_{max})}{ \sum_{j=1}^{N} \exp(x_j - x_{max})}} \Bigr) \\ & = \log \exp(x_i - x_{max}) - \log { \sum_{j=1}^{N} \exp(x_j - x_{max}) } \\ & = (x_i - x_{max}) - \log { \underbrace{\sum_{j=1}^{N} \exp(x_j - x_{max}) }_{\gt 1} } \end{aligned} \tag{4} logsoftmax(xi)=log(j=1Nexp(xjxmax)exp(xixmax))=logexp(xixmax)logj=1Nexp(xjxmax)=(xixmax)log>1 j=1Nexp(xjxmax)(4)

6.2 附录2: sigmoid loss梯度分析

L = − 1 ∣ B ∣ ∑ i = 1 ∣ B ∣ ∑ j = 1 ∣ B ∣ log ⁡ 1 1 + e z i j ( − t x i ⋅ y j + b ) = − 1 ∣ B ∣ ∑ i = 1 ∣ B ∣ ∑ j = 1 ∣ B ∣ log ⁡ S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) (5) \mathcal{L} = - \frac { 1 } { | \mathcal { B } | } \sum _ { i = 1 } ^ { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } \log \frac { 1 } { 1 + e ^ { z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b ) } } \\ = - \frac { 1 } { | \mathcal { B } | } \sum _ { i = 1 } ^ { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } \log \mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b )) \tag{5} L=B1i=1Bj=1Blog1+ezij(txiyj+b)1=B1i=1Bj=1BlogSigmoid(zij(txiyj+b))(5)

梯度

S i g m o i d ( x ) ′ = S i g m o i d ( x ) ( 1 − S i g m o i d ( x ) ) (6) \mathrm{Sigmoid}(x)^{\prime} = \mathrm{Sigmoid}(x) (1 - \mathrm{Sigmoid}(x)) \tag{6} Sigmoid(x)=Sigmoid(x)(1Sigmoid(x))(6)

∂ L ∂ x i = ∂ ( − 1 ∣ B ∣ ∑ i = 1 ∣ B ∣ ∑ j = 1 ∣ B ∣ log ⁡ S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) ) ∂ x i = − 1 ∣ B ∣ ∑ j = 1 ∣ B ∣ ∂ ( log ⁡ S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) ) ) ∂ x i = − 1 ∣ B ∣ ∑ j = 1 ∣ B ∣ 1 S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) [ S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) ( 1 − S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) ) ] ∗ ( z i j t ) ⋅ y j = − z i j t ∣ B ∣ ∑ j = 1 ∣ B ∣ ( 1 − S i g m o i d ( − z i j ( − t x i ⋅ y j + b ) ) ) ⏟ c o e f ⋅ y j (7) \begin{align*} \frac{\partial{\mathcal{L}}}{\partial \mathbf {x_i}} &= \frac{\partial (- \frac { 1 } { | \mathcal { B } | } \sum _ { i = 1 } ^ { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } \log \mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b )))}{\partial \mathbf {x_i}} \\ &= - \frac { 1 } { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } \frac{\partial( \log \mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b ))) )}{\partial \mathbf {x_i}} \\ &= - \frac { 1 } { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } \frac{1}{\mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b ))}[\mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b )) (1 - \mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b )))]* (z_{ij}t)\cdot \mathbf { y } _ { j } \\ &= \underbrace{-\frac { z_{ij}t } { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } (1 - \mathrm{Sigmoid}(- z _ { i j } ( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b )))}_{\mathrm{coef }} \cdot \mathbf { y } _ { j } \end{align*} \tag{7} xiL=xi(B1i=1Bj=1BlogSigmoid(zij(txiyj+b)))=B1j=1Bxi(logSigmoid(zij(txiyj+b))))=B1j=1BSigmoid(zij(txiyj+b))1[Sigmoid(zij(txiyj+b))(1Sigmoid(zij(txiyj+b)))](zijt)yj=coef Bzijtj=1B(1Sigmoid(zij(txiyj+b)))yj(7)

当为正例 z i j = 1 z_{ij} = 1 zij=1

∂ L ∂ x i = − t ∣ B ∣ ∑ j = 1 ∣ B ∣ ( 1 − S i g m o i d ( t x i ⋅ y j − b ) ) ⋅ y j (8) \frac{\partial{\mathcal{L}}}{\partial \mathbf {x_i}} = - \frac { t } { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } (1 - \mathrm{Sigmoid}( t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } - b ))\cdot \mathbf { y } _ { j } \tag{8} xiL=Btj=1B(1Sigmoid(txiyjb))yj(8)

当为负例 z i j = − 1 z_{ij} = -1 zij=1

∂ L ∂ x i = t ∣ B ∣ ∑ j = 1 ∣ B ∣ ( 1 − S i g m o i d ( − t x i ⋅ y j + b ) ) ⋅ y j (9) \frac{\partial{\mathcal{L}}}{\partial \mathbf {x_i}} = \frac { t } { | \mathcal { B } | } \sum _ { j = 1 } ^ { | \mathcal { B } | } (1 - \mathrm{Sigmoid}( - t \mathbf { x } _ { i } \cdot \mathbf { y } _ { j } + b ))\cdot \mathbf { y } _ { j } \tag{9} xiL=Btj=1B(1Sigmoid(txiyj+b))yj(9)

通过预设 ( b , t ) = ( 0 , 1 ) (b, t)=(0,1) (b,t)=(01) ( − 10 , log ⁡ 10 ) (-10, \log10) (10log10)时不同logits下正负样本梯度的coefficient。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值