代码随想录算法训练营第四十天 | leetcode 343. 整数拆分,96.不同的二叉搜索树
343. 整数拆分
题目:
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
题目链接:343. 整数拆分
class Solution:
def integerBreak(self, n: int) -> int:
dp = [0] * (n+1)
dp[2] = 1
for i in range(3, n+1):
for j in range(1, int(i/2) + 1):
# 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
# 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
# 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
dp[i] = max(dp[i], max(j * (i-j), j * dp[i-j]))
return dp[n]
96.不同的二叉搜索树
题目:
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
题目链接:96. 不同的二叉搜索树
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n+1)
dp[0], dp[1] = 1, 1
for i in range(2, n+1):
for j in range(1, i+1):
# 对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
# 一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
dp[i] += dp[j-1] * dp[i-j]
return dp[-1]
元素i为头结点搜索树的数量=左节点搜索树数量* 右节点搜索树数量