『Trie树·DP』 [HNOI2004]L语言

本文介绍了如何处理无标点文章的理解问题,通过建立Trie树和应用动态规划(DP)方法来判断文章是否在给定字典下可理解,并找出最长可理解的前缀位置。
摘要由CSDN通过智能技术生成

P r o b l e m \mathrm{Problem} Problem

标点符号的出现晚于文字的出现,所以以前的语言都是没有标点的。现在你要处理的就是一段没有标点的文章。

一段文章T是由若干小写字母构成。一个单词W也是由若干小写字母构成。一个字典D是若干个单词的集合。我们称一段文章T在某个字典D下是可以被理解的,是指如果文章T可以被分成若干部分,且每一个部分都是字典D中的单词。

例如字典D中包括单词{‘is’, ‘name’, ‘what’, ‘your’},则文章‘whatisyourname’是在字典D下可以被理解的,因为它可以分成4个单词:‘what’, ‘is’, ‘your’, ‘name’,且每个单词都属于字典D,而文章‘whatisyouname’在字典D下不能被理解,但可以在字典D’=D+{‘you’}下被理解。这段文章的一个前缀‘whatis’,也可以在字典D下被理解,而且是在字典D下能够被理解的最长的前缀。

给定一个字典D,你的程序需要判断若干段文章在字典D下是否能够被理解。并给出其在字典D下能够被理解的最长前缀的位置。

S o l u t i o n \mathrm{Solution} Solution

第一次写这种题直接一发暴力70分…居然要用DP来维护。

我们对于这些字符串的匹配问题肯定要建立trie树

我们设 f [ i ] f[i] f[i]表示前缀 [ 1 , i ] [1,i] [1,i]是否已经完成了匹配,当 f [ i ] = 1 f[i]=1 f[i]=1时,若 [ i + 1 , j ] [i+1,j] [i+1,j]也被匹配则 f [ j ] = 1 f[j]=1 f[j]=1.表示 j j j也已经被匹配。

至于如何匹配我们可以使用trie树来进行维护。这样问题就很简单了。

C o d e \mathrm{Code} Code

#include <cstdio>
#include <string.h>
#include <iostream> 

using namespace std;
const int N = 300;
const int M = 5e6;

int n, m;
int cnt = 1;
int trie[N*N][30], end[N*N], f[M];
char s[M];

void insert(void)
{
	cin>>s+1;
	int len = strlen(s+1), p = 1;
	for (int i=1;i<=len;++i)
	{
		if (!trie[p][s[i]-'a']) trie[p][s[i]-'a'] = ++ cnt;
		p = trie[p][s[i]-'a'];
	}
	end[p] ++;
	return;
} 

void query(void)
{
	cin>>s+1;
	int len = strlen(s+1), ans;
	memset(f,0,sizeof f);
	f[0] = 1;
	for (int i=0;i<=len;++i) 
	{
		if (f[i] == 0) continue;
		else ans = i;
		for (int j=i+1,p=1;j<=len;++j)
		{
			if (!trie[p][s[j]-'a']) break;
			p = trie[p][s[j]-'a'];
			if (end[p] >= 1) f[j] = 1;
		}
	}
	cout<<ans<<endl;
}

int main(void)
{
	freopen("language.in","r",stdin);
	freopen("language.out","w",stdout);
	cin>>n>>m;
	for (int i=1;i<=n;++i) insert();
	for (int i=1;i<=m;++i) query();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值