【算法笔记】资源分配类动态规划

本文通过实例解析资源分配类动态规划问题,包括HLOJ#411机器分配和修理马棚两个案例。通过双重循环建立状态转移方程,利用前缀和处理冲突值,深入理解动态规划的思路和应用。
摘要由CSDN通过智能技术生成

1.HLOJ#411机器分配

要求资源分配的最大值,我们可以用二维数组f[i][j]来表示前i个公司得到j台机器后所得到的最大盈利值。

方程是:

f[i][j]=max(f[i][j],f[i-1][k]+a[i][j-k]);

我们要去枚举每一个i和j,因此用双重循环来解决,k表示第i个公司取的不取机器数,即1~i-1个公司取的机器数;f[i-1][k]表示前i-1个公司取k台机器的最大值,a[i][j-k]表示第i个公司取剩余的k台机器的利益,那么f[i-1][k]+a[i][j-k]表示的就是第i个公司不取k台机器所得到的最大值,当然,k也是用循环来枚举的。

其中,k就是划分的阶段,来进行枚举不用的机器

emm.......

有点绕,毕竟我感觉资源分配的博客是我一直相要写的,却一直不知道要怎么表达,因此写的有点绕,也只能在方程的基础上解释一下方程的意义了,那么结合代码也许可以更好理解一些:

#include<bits/stdc++.h>
using namespace std;
int a[1000][1000],f[1000][1000]={},n,m;
int main()
{
   
	cin>>m>>n;
	for (int i=1;i<=n;i++)
	   for (int j=1;j<=m;j++)
	      cin>>a[i][j];
	for (int i=1;i<=n;i++)
	  for (int j=1;j
实验课程:算法分析与设计 实验名称:用动态规划法求解资源分配问题 (验证型实验) 实验目标: (1)掌握用动态规划方法求解实际问题的基本思路。 (2)进一步理解动态规划方法的实质,巩固设计动态规划算法的基本步骤。 实验任务: (1)设计动态规划算法求解资源分配问题,给出算法的非形式描述。 (2) 在Windows环境下用C 语言实现该算法。计算10个实例,每个实例中n=30, m=10, Ci j为随机产生于范围(0,103)内的整数。记录各实例的数据及执行结果(即最优分配方案、最优分配方案的值)、运行时间。 (3)从理论上分析算法的时间和空间复杂度,并由此解释相应的实验结果。 实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1) 根据实验目标,明确实验的具体任务; (2) 分析资源分配问题,获得计算其最优值的递推计算公式; (3) 设计求解问题的动态规划算法,并编写程序实现算法; (4) 设计实验数据并运行程序、记录运行的结果; (5) 分析算法的时间和空间复杂度,并由此解释释相应的实验结果; 问题分析: 问题描述: 某厂根据计划安排,拟将n台相同的设备分配给m个车间,各车间获得这种设备后,可以为国家提供盈利Ci j(i台设备提供给j号车间将得到的利润,1≤i≤n,1≤j≤m) 。问如何分配,才使国家得到最大的盈利? 算法基本思想: 本问题是一简单资源分配问题,由于具有明显的最优子结构,故可以使用动态规划求解,用状态量f[i][j]表示用i台设备分配给前j个车间的最大获利,那么显然有f[i][j] = max{ f[k][j–1] + c[i-k][j] },0<=k<=i。再用p[i][j]表示获得最优解时第j号车间使用的设备数为i-p[i][j],于是从结果倒推往回求即可得到分配方案。程序实现时使用顺推,先枚举车间数,再枚举设备数,再枚举状态转移时用到的设备数,简单3重for循环语句即可完成。时间复杂度为O(n^2*m),空间复杂度为O(n*m),倘若此题只需求最大获利而不必求方案,则状态量可以减少一维,空间复杂度优化为O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值