题目描述
传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。
两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。
可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。
拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。
可以一堆都不拿,但不可以全部拿走。
第二回合也一样,第二个游戏者也有这样一次机会。
从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?
如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
题解
根据 n i m nim nim游戏的相关定理:若当前石子数的 x o r xor xor值大于 0 0 0有必胜策略;若石子数的 x o r xor xor值等于 0 0 0则必败。
我们如果第一人如果要必胜,就必须要在第二个拿完石头以后所有的石头异或和不为 0 0 0;显然如果在第一次拿完石头以后,如果存在某一个石头异或和为 0 0 0,则第一个人必败。
因此我们就得到了第一个人的拿石头策略:在拿完石头以后,不会出现若干个石头异或为 0 0 0的情况。
这就对应了一个线性基:能被其他石头异或后得到石头一定保证异或后为0,因此把这一堆石头去掉即可。这就对应可去掉在高斯消元中被削成全 0 0 0的那些石头。
由于要取走的数量尽可能的小,在每一次的选取中选小的即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int n, cnt = 0;
int a[10000];
int c[10000];
int main(void)
{
cin>>n;
for (int i=1;i<=n;++i)
{
cin>>a[i];
c[i] = a[i];
}
for (int i=31;i>=0;--i)
{
int Max = 0, k = 0;
for (int j=cnt+1;j<=n;++j)
if ((a[j] >> i & 1) && c[j] > Max)
Max = c[j], k = j;
if (Max == 0) continue;
cnt ++;
swap(a[cnt], a[k]);
swap(c[cnt], c[k]);
for (int j=1;j<=n;++j)
if ((a[j] >> i & 1) && j ^ cnt)
a[j] ^= a[cnt];
//挑选不拿走的石头数 尽可能大
}
long long ans = 0;
for (int i=cnt+1;i<=n;++i) ans += c[i];
cout<<ans<<endl;
return 0;
}