[bzoj4813][树形dp]小Q的棋盘

123 篇文章 1 订阅
109 篇文章 4 订阅

Description

小Q正在设计一种棋类游戏。在小Q设计的游戏中,棋子可以放在棋盘上的格点中。某些格点之间有连线,棋子只能
在有连线的格点之间移动。整个棋盘上共有V个格点,编号为0,1,2…,V-1,它们是连通的,也就是说棋子从任意格
点出发,总能到达所有的格点。小Q在设计棋盘时,还保证棋子从一个格点移动到另外任一格点的路径是唯一的。
小Q现在想知道,当棋子从格点0出发,移动N步最多能经过多少格点。格点可以重复经过多次,但不重复计数。

Input

第一行包含2个正整数V,N,其中V表示格点总数,N表示移动步数。
接下来V-1行,每行两个数Ai,Bi,表示编号为Ai,Bi的两个格点之间有连线。
V,N100, 0 ≤Ai,Bi<V 

Output

输出一行一个整数,表示最多经过的格点数量。

Sample Input

5 2
1 0
2 1
3 2
4 3

Sample Output

3

题解

我觉得我好辣鸡。。想到是树形dp结果不会转移。。最后发现转移贼简单
设g[x][i]表示从x走i步不回来
 f[x][i]表示从x走i步最后回到x点
转移如下 
g[x][i]=max(g[x][i],g[y][j-1]+f[x][i-j]);
            不回来的话,就要留一步从子树回来的,还有从其他子树过来的                    
f[x][i]=max(f[x][i],f[y][j-2]+f[x][i-j]);
            回来,那么我走下去还要走回来,这棵子树和其他子树一起回到我 
g[x][i]=max(g[x][i],f[y][j-2]+g[x][i-j]);
            不回来 上面算了在现在的子树不回来 那么现在算其他子树不回来
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
struct node
{
    int x,y,next;
}a[210];int len,last[110];
void ins(int x,int y)
{
    len++;
    a[len].x=x;a[len].y=y;
    a[len].next=last[x];last[x]=len;
}
int g[110][110],f[110][110];
//g[x][i]从x往下走i步,不回来
//f[x][i]从x往下走i步,回来 
int n,m;
void treedp(int x,int fa)
{
    for(int i=0;i<=m;i++)g[x][i]=f[x][i]=1;
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=fa)
        {
            treedp(y,x);
            for(int i=m;i;i--)
                for(int j=1;j<=i;j++)//在这棵子树中走j步(从父亲开始走) 
                {
                    g[x][i]=max(g[x][i],g[y][j-1]+f[x][i-j]);//不回来的话,就要留一步从子树回来的,还有从其他子树过来的 
                    if(j>=2)
                    {
                        f[x][i]=max(f[x][i],f[y][j-2]+f[x][i-j]);//回来,那么我走下去还要走回来,这棵子树和其他子树一起回到我 
                        g[x][i]=max(g[x][i],f[y][j-2]+g[x][i-j]);//不回来 上面算了在现在的子树不回来 那么现在算其他子树不回来 
                    }
                }
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    len=0;memset(last,0,sizeof(last));
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        x++;y++;
        ins(x,y);ins(y,x);
    }
    treedp(1,0);
    printf("%d\n",g[1][m]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值