[bzoj1571][Usaco2009 Open][DP]滑雪课Ski

123 篇文章 1 订阅
109 篇文章 4 订阅

Description

Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪。很不幸,Bessie滑雪技术并不精湛。Bessie了解到,在滑雪场里,每天会提供S(0<=S<=100)门滑雪课。第i节课始于M_i(1<=M_i<=10000),上的时间为L_i(1<=L_i<=10000)。上完第i节课后,Bessie的滑雪能力会变成A_i(1<=A_i<=100).注意:这个能力是绝对的,不是能力的增长值。 Bessie买了一张地图,地图上显示了N(1 <= N <=10,000)个可供滑雪的斜坡,从第i个斜坡的顶端滑至底部所需的时长D_i(1<=D_i<=10000),以及每个斜坡所需要的滑雪能力C_i(1<=C_i<=100),以保证滑雪的安全性。Bessie的能力必须大于等于这个等级,以使得她能够安全滑下。Bessie可以用她的时间来滑雪,上课,或者美美地喝上一杯可可汁,但是她必须在T(1<=T<=10000)时刻离开滑雪场。这意味着她必须在T时刻之前完成最后一次滑雪。求Bessie在实现内最多可以完成多少次滑雪。这一天开始的时候,她的滑雪能力为1.

Input

第1行:3个用空格隔开的整数:T, S, N。

第2~S+1行:第i+1行用3个空格隔开的整数来描述编号为i的滑雪课:M_i,L_i,A_i。

第S+2~S+N+1行:

第S+i+1行用2个空格隔开的整数来描述第i个滑雪坡:C_i,D_i。

Output

一个整数,表示Bessie在时间限制内最多可以完成多少次滑雪。

Sample Input

10 1 2
3 2 5
4 1
1 3

Sample Output

6

HINT

滑第二个滑雪坡1次,然后上课,接着滑5次第一个滑雪坡。

题解

好垃圾啊一道dp连优化都想不出来。。
观察一下数据范围,可以发现f[i][j]记录第i个时间点,能力为j能滑雪的最大次数
然后呢??莫非每次都要for n个滑雪道????
当然不存在的
可以想出有个贪心,对于能力i,我们一定选小于i且时间最短的滑雪道。用一个a数组记录
还有一个东西,如果要上课的话,自然是越晚越好啦
之后瞎转移就好。。
哦。如果你这样转移的话,样例会撸出来个10。
因为继承滑雪道的时候,会继承到一些不可能达到的状态。譬如f[0][4]。废话初始能力值为1怎么能继承4???
所以。。初始还要memset f为-inf

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
int last[110][110];//第i分钟结束 能力值转为j 最晚的开始时间 
int n,s,t;
int f[11000][110];//f[i][j]表示时间为i 能力值变为j 能滑雪的最大次数 
int a[110];//能力值为i 滑雪一次的最小时间
int g[11000];//时间为i 能滑雪的最大值 
int main()
{
    freopen("ski.in","r",stdin);
    freopen("ski.out","w",stdout);
    memset(a,63,sizeof(a));
    scanf("%d%d%d",&t,&s,&n);
    for(int i=1;i<=s;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        y+=x;last[y][z]=max(last[y][z],x);
    }
    for(int i=1;i<=n;i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        a[u]=min(a[u],v);
    }
    for(int i=2;i<=100;i++)a[i]=min(a[i],a[i-1]);
    for(int i=0;i<=t;i++)for(int j=1;j<=100;j++)f[i][j]=-999999999;
    f[0][1]=0;
    for(int i=1;i<=t;i++)
    {
        for(int j=1;j<=100;j++)
        {
            f[i][j]=f[i-1][j];//喝可可汁
            if(last[i][j]>0)f[i][j]=max(f[i][j],g[last[i][j]]);//因为可以从任意能力转,那么转自然是最大值
            if(i-a[j]>=0)f[i][j]=max(f[i][j],f[i-a[j]][j]+1);//滑跑道
            g[i]=max(g[i],f[i][j]);
        }
    }
    printf("%d\n",g[t]);
    return 0;
}
目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值