Description
JOI君有N个装在手机上的挂饰,编号为1…N。 JOI君可以将其中的一些装在手机上。
JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他挂件的挂钩。每个挂件要么直接挂在手机上,要么挂在其他挂件的挂钩上。直接挂在手机上的挂件最多有1个。
此外,每个挂件有一个安装时会获得的喜悦值,用一个整数来表示。如果JOI君很讨厌某个挂饰,那么这个挂饰的喜悦值就是一个负数。
JOI君想要最大化所有挂饰的喜悦值之和。注意不必要将所有的挂钩都挂上挂饰,而且一个都不挂也是可以的。
Input
第一行一个整数N,代表挂饰的个数。
接下来N行,第i行(1<=i<=N)有两个空格分隔的整数Ai和Bi,表示挂饰i有Ai个挂钩,安装后会获得Bi的喜悦值。
Output
输出一行一个整数,表示手机上连接的挂饰总和的最大值
Sample Input
5
0 4
2 -2
1 -1
0 1
0 3
Sample Output
5
HINT
将挂饰2直接挂在手机上,然后将挂饰1和挂饰5分别挂在挂饰2的两个挂钩上,可以获得最大喜悦值4-2+3=5。
1<=N<=2000
0<=Ai<=N(1<=i<=N)
-10^6<=Bi<=10^6(1<=i<=N)
题解
开始想一维DP然后发现是N^3的转移,或许是我的转移太丑了?机房有人表示一维可做
那就写二维吧
设f[i][j]表示前i个物品,剩下j个钩子的最大喜悦值
首先你肯定要按钩子数量排序嘛,因为N^2转移里肯定要求钩子越多越好啦
然后,钩子那一维可以只开N,因为只有N个物品其他也装不下。
转移可以看代码特别好懂的
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
int f[2100][2100],n;
bool v[2100][2100];
struct node
{
int a,b;
}A[2100];
bool cmp(node n1,node n2){return n1.a>n2.a;}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d",&A[i].a,&A[i].b);
sort(A+1,A+1+n,cmp);
int ans=0;
memset(v,false,sizeof(v));v[0][1]=true;
memset(f,-63,sizeof(f));f[0][1]=0;
for(int i=1;i<=n;i++)
for(int j=0;j<=n;j++)
{
if(v[i-1][j] && j!=0)f[i][min(n,j-1+A[i].a)]=max(f[i][min(n,j-1+A[i].a)],f[i-1][j]+A[i].b),v[i][min(n,j-1+A[i].a)]=true;
f[i][j]=max(f[i][j],f[i-1][j]);v[i][j]|=v[i-1][j];
}
for(int i=0;i<=n;i++)if(v[n][i])ans=max(ans,f[n][i]);
printf("%d\n",ans);
return 0;
}