Description
小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池。
这 n 个城池用 1 到 n 的整数表示。除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, 其中 fi
< i。也就是说,所有城池构成了一棵有根树。这 m 个骑士用 1 到 m 的整数表示,其 中第 i 个骑士的初始战斗力为
si,第一个攻击的城池为 ci。 每个城池有一个防御值 hi,如果一个骑士的战斗力大于等于城池的生命值,那么骑士就可
以占领这座城池;否则占领失败,骑士将在这座城池牺牲。占领一个城池以后,骑士的战斗力 将发生变化,然后继续攻击管辖这座城池的城池,直到占领 1
号城池,或牺牲为止。 除 1 号城池外,每个城池 i 会给出一个战斗力变化参数 ai;vi。若 ai =0,攻占城池 i
以后骑士战斗力会增加 vi;若 ai =1,攻占城池 i 以后,战斗力会乘以
vi。注意每个骑士是单独计算的。也就是说一个骑士攻击一座城池,不管结果如何,均不会影响其他骑士攻击这座城池的结果。
现在的问题是,对于每个城池,输出有多少个骑士在这里牺牲;对于每个骑士,输出他攻占的城池数量。
Input
第 1 行包含两个正整数 n;m,表示城池的数量和骑士的数量。
第 2 行包含 n 个整数,其中第 i 个数为 hi,表示城池 i 的防御值。 第 3 到 n +1 行,每行包含三个整数。其中第 i +1
行的三个数为 fi;ai;vi,分别表示管辖 这座城池的城池编号和两个战斗力变化参数。 第 n +2 到 n + m +1
行,每行包含两个整数。其中第 n + i 行的两个数为 si;ci,分别表 示初始战斗力和第一个攻击的城池。
Output
输出 n + m 行,每行包含一个非负整数。其中前 n 行分别表示在城池 1 到 n 牺牲的骑士
数量,后 m 行分别表示骑士 1 到 m 攻占的城池数量。
Sample Input
5 5
50 20 10 10 30
1 1 2
2 0 5
2 0 -10
1 0 10
20 2
10 3
40 4
20 4
35 5
Sample Output
2
2
0
0
0
1
1
3
1
1
HINT
对于 100% 的数据,1 <= n;m <= 300000; 1 < = fi < i; 1 <= ci <= n; -10^18 <=
hi,vi,si <= 10^18;ai等于1或者2;当 ai =1 时,vi > 0;保证任何时候骑士战斗力值的绝对值不超过 10^18。
题解
%了一发题解
左偏树不会,于是我又学了一发左偏树
大概的思路就是一棵左边节点多于右边节点的二叉树?且他满足堆的性质
对于两棵左偏树合并,我们让他优先往右边合并,合并回来之后发现右边节点多于左边的话交换两棵子树。
那么这道题呢,我们可以对于每个节点都维护一个堆,存储到这个节点(暂时不打这个节点)的骑士战斗值。每个节点我们都通过他的防御值筛掉一部分骑士,至于战斗力增长,可以在堆上打标记。删除插入时都要把标记下放
问题转化为每个节点的孩子节点的堆合并问题,可以上左偏树解决啦
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
struct node
{
int x,y,next;
}a[611000];int len,last[311000];
void ins(int x,int y){len++;a[len].x=x;a[len].y=y;a[len].next=last[x];last[x]=len;}
struct heap
{
int l,r,d;
LL c,ad,mu;
}tr[611000];
void ch(int now,LL ad,LL mu)
{
if(now==0)return ;
if(ad==0 && mu==1)return ;
tr[now].c=tr[now].c*mu+ad;
tr[now].ad=tr[now].ad*mu+ad;
tr[now].mu=tr[now].mu*mu;
}
void pushdown(int now)
{
int l=tr[now].l,r=tr[now].r;
ch(l,tr[now].ad,tr[now].mu);ch(r,tr[now].ad,tr[now].mu);
tr[now].ad=0;tr[now].mu=1;
}
int merge(int x,int y)
{
if(x==0 || y==0)return x+y;
pushdown(x);pushdown(y);
if(tr[x].c>tr[y].c)swap(x,y);
tr[x].r=merge(tr[x].r,y);
if(tr[tr[x].l].d<tr[tr[x].r].d)swap(tr[x].l,tr[x].r);
tr[x].d=tr[tr[x].r].d+1;
return x;
}
int n,m;
LL def[310000];
int op[310000];LL val[310000];
int fa[310000],rt[310000];
int die[310000],past[310000],dep[310000];
void del(int x){rt[x]=merge(tr[rt[x]].l,tr[rt[x]].r);}
void pre_tree_node(int x)
{
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
dep[y]=dep[x]+1;
pre_tree_node(y);
rt[x]=merge(rt[x],rt[y]);
}
while(rt[x] && tr[rt[x]].c<def[x])
{
past[x]++;
pushdown(rt[x]);
die[rt[x]]=x;
del(x);
}
if(op[x])ch(rt[x],0,val[x]);
else ch(rt[x],val[x],1);
}
int go[310000];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%lld",&def[i]);
for(int i=2;i<=n;i++)
{
scanf("%d%d%lld",&fa[i],&op[i],&val[i]);
ins(fa[i],i);
}
for(int i=1;i<=m;i++)
{
scanf("%lld%d",&tr[i].c,&go[i]);tr[i].mu=1;tr[i].ad=0;
rt[go[i]]=merge(rt[go[i]],i);
}
dep[1]=1;fa[1]=0;pre_tree_node(1);
for(int i=1;i<=n;i++)printf("%d\n",past[i]);
for(int i=1;i<=m;i++)printf("%d\n",dep[go[i]]-dep[die[i]]);
return 0;
}