bzoj4003 [JLOI2015]城池攻占(左偏树)

左偏树就是满足堆性质,且满足左子树深度不小于右子树深度的二叉树。
这样右子树深度是 O(logn) O ( l o g n ) 的。
可以用来做可合并堆。
复杂度 O(nlogn) O ( n l o g n )

此题就是裸题啦,维护一个乘法标记和加法标记即可。因为乘的是一个正数,因此大小关系不变。从底向上合并起来即可。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 300010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(T==S){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline ll read(){
    ll x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,m,op[N],rt[N],ans[N],ed[N],st[N],dep[N];
ll b[N],a[N];
vector<int>Son[N];
struct Heap{
    ll val,mul,add;int ls,rs,dis;
}tr[N];
inline void dotag(int p,ll mul,ll add){
    if(!p) return;tr[p].val*=mul;tr[p].val+=add;
    tr[p].mul*=mul;tr[p].add*=mul;tr[p].add+=add;
}
inline void pushdown(int p){
    dotag(tr[p].ls,tr[p].mul,tr[p].add);
    dotag(tr[p].rs,tr[p].mul,tr[p].add);tr[p].mul=1;tr[p].add=0;
}
inline int merge(int p1,int p2){
    if(!p1||!p2) return p1+p2;
    pushdown(p1);pushdown(p2);
    if(tr[p1].val>tr[p2].val) swap(p1,p2);
    tr[p1].rs=merge(tr[p1].rs,p2);
    if(tr[tr[p1].ls].dis<tr[tr[p1].rs].dis) swap(tr[p1].ls,tr[p1].rs);
    tr[p1].dis=tr[tr[p1].rs].dis+1;return p1;
}
inline void dfs(int x){
    for(int i=0;i<Son[x].size();++i){
        int y=Son[x][i];dep[y]=dep[x]+1;dfs(y);rt[x]=merge(rt[x],rt[y]);
    }while(rt[x]&&tr[rt[x]].val<b[x]){
        int y=rt[x];ans[x]++;ed[y]=x;pushdown(rt[x]);
        rt[x]=merge(tr[rt[x]].ls,tr[rt[x]].rs);
    }if(op[x]) dotag(rt[x],a[x],0);
    else dotag(rt[x],1,a[x]);
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();
    for(int i=1;i<=n;++i) b[i]=read();
    for(int i=2;i<=n;++i) Son[read()].push_back(i),op[i]=read(),a[i]=read();
    for(int i=1;i<=m;++i){
        tr[i].val=read();int x=read();st[i]=x;
        tr[i].mul=1;tr[i].add=0;tr[i].ls=tr[i].rs=tr[i].dis=0;
        rt[x]=merge(rt[x],i);
    }dep[1]=1;dfs(1);
    for(int i=1;i<=n;++i) printf("%d\n",ans[i]);
    for(int i=1;i<=m;++i) printf("%d\n",dep[st[i]]-dep[ed[i]]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值