[bzoj2301][莫比乌斯反演]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) =
k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题解

莫反水题
设F[k]表示公约数中含有K的数对个数
f[k]表示最大公约数为K的数对个数
容易看出满足莫反第二个公式
于是你就搞出(1,b),(1,d),(1,a1),(1,d),(1,b),(1,c1),(1,a1),(1,c1)的F[k],然后容斥一下随便搞
注意这题多组数据,所以莫反的时候要进行一下分块加速即预处理mu[i]前缀和以及整数除法相同的可以一起计算的思想

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
int mu[1110000],pri[1110000],pr;
bool v[1110000];
void getpri(int n)
{
    mu[1]=1;
    memset(v,true,sizeof(v));
    for(int i=2;i<=n;i++)
    {
        if(v[i])
        {
            pri[++pr]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=pr && i*pri[j]<=n;j++)
        {
            v[i*pri[j]]=false;
            if(i%pri[j]==0)
            {
                mu[i*pri[j]]=0;
                break;
            }
            else mu[i*pri[j]]=-mu[i];
        }
    }
}
int a,b,c,d,k;
LL sum[1110000];
LL get(int u,int v)
{
    int tmp=min(u,v);
    LL ret=0;int last=0,i=1;
    //for(int i=1;k*i<=tmp;i++)ret+=(LL)mu[i]*(u/(k*i))*(v/(k*i));
    while(i*k<=tmp)
    {
        int gx=min(tmp,u/(u/(k*i))/k),gy=min(tmp,v/(v/(k*i))/k);
        ret+=(LL)(sum[min(gx,gy)]-sum[i-1])*(u/(k*i))*(v/(k*i));
        i=min(gx,gy)+1;
    }
    return ret;
}
int main()
{
    int T;scanf("%d",&T);
    getpri(1000000);
    for(int i=1;i<=1000000;i++)sum[i]=sum[i-1]+mu[i];
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        if(k==0){printf("0\n");continue;}
        //a/=k;b/=k;c/=k;d/=k;
        LL ans=0;
        printf("%lld\n",get(b,d)-get(b,c-1)-get(a-1,d)+get(a-1,c-1));
        /*for(int i=1;k*i<=min(b,d);i++)ans+=(LL)mu[i]*(b/(k*i))*(d/(k*i));
        for(int i=1;k*i<=min(b,c-1);i++)ans-=(LL)mu[i]*(b/(k*i))*((c-1)/(k*i));
        for(int i=1;k*i<=min(a-1,d);i++)ans-=(LL)mu[i]*((a-1)/(k*i))*(d/(k*i));
        for(int i=1;k*i<=min(a-1,c-1);i++)ans+=(LL)mu[i]*((a-1)/(k*i))*((c-1)/(k*i));
        printf("%lld\n",ans);*/
    }
    return 0;
}
发布了607 篇原创文章 · 获赞 41 · 访问量 11万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览