BZOJ 2301 Problem b(莫比乌斯反演)

Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d且gcd(x,y)=k,gcd(x,y)函数为x和y的最大公约数
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a,b,c,d,k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
Solution
设f(x,y,k)为1<=i<=x,1<=j<=y且gcd(i,j)=k的(i,j)对数,则有
这里写图片描述
进而ans=f(b,d,k)-f(a-1,d,k)-f(b,c-1,k)+f(a-1,c-1,k)
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 55555
typedef long long ll;
bool check[maxn];
int prime[maxn],mu[maxn],sum[maxn];
void Moblus(int n)
{
    memset(check,0,sizeof(check));
    mu[1]=sum[1]=1;
    int tot=0;
    for(int i=2;i<=n;i++)
    {
        if(!check[i])
        {
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i*prime[j]>n)break;
            check[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else mu[i*prime[j]]=-mu[i];
        }
        sum[i]=sum[i-1]+mu[i];
    }
}
ll solve(int n,int m,int k)
{
    n=n/k,m=m/k;
    if(n>m)swap(n,m);
    ll ans=0;
    for(int i=1,next=0;i<=n&&i<=m;i=next+1)
    {
        next=min(n/(n/i),m/(m/i));
        ans+=1ll*(n/i)*(m/i)*(sum[next]-sum[i-1]);
    }
    return ans;
}
int T,a,b,c,d,k;
int main()
{
    Moblus(maxn-10);
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        a--,c--;
        ll ans=solve(b,d,k)-solve(a,d,k)-solve(b,c,k)+solve(a,c,k);
        printf("%lld\n",ans);
    }
    return 0;
}
发布了2432 篇原创文章 · 获赞 184 · 访问量 86万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览