[bzoj3622][DP][容斥原理]已经没有什么好害怕的了

本文介绍了一种使用动态规划(DP)算法解决特定组合问题的方法。通过将输入数据排序并应用DP状态转移方程,文章详细阐述了如何计算在一组糖果和药片中找到特定数量的组合,使得糖果的数量总是大于药片的数量。此外,还讨论了如何处理重复计数的问题,确保每种组合只被计算一次。

Description

这里写图片描述

Input

这里写图片描述

Output

这里写图片描述

Sample Input

4 2

5 35 15 45

40 20 10 30

Sample Output

4

HINT

输入的2*n个数字保证全不相同。

还有输入应该是第二行是糖果,第三行是药片

题解

DP呀..
从小到大排序
显然我们要找n+k2n+k2个糖果比药片大的组合
朴素dp方程,设f[i][j]f[i][j]表示前ii个中找到j个合法组合 其它不管的数量
转移有

f[i][j]=f[i1][j]+f[i1][j1](pos[i]j+1)f[i][j]=f[i−1][j]+f[i−1][j−1]∗(pos[i]−j+1)

其中pos[i]pos[i]表示ii最多能取到哪一位
会有重复
因为
a1>b1 a2>b2 a3>b3
选(a1,b1,a2,b2)和(a1,b1,a3,b3)会被判为两种不同情况
于是设g[i]表示nn个钟只有i个合法情况的状态数
转移有
g[i]=f[n][i](ni)!j=i+1ng[j]g[i]=f[n][i]∗(n−i)!−∑j=i+1ng[j]

前面表示只取i个,后面任选
然后去掉比i多的数目的算到i里的东西
就可以了。。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define mod 1000000009
#define LL long long
using namespace std;
LL pow_mod(LL a,LL b)
{
    LL ret=1;
    while(b)
    {
        if(b&1)ret=ret*a%mod;
        a=a*a%mod;b>>=1;
    }
    return ret;
}
LL inv[2005],pre[2005];
LL C(int n,int m){return pre[n]*inv[m]%mod*inv[n-m]%mod;}
int a[2005],b[2005],n,m,pos[2005];
LL f[2005][2005],g[2005];
void dl(LL &x,LL y){x-=y;if(x<0)x+=mod;}
int main()
{
    pre[0]=1;for(int i=1;i<=2000;i++)pre[i]=pre[i-1]*i%mod;
    inv[2000]=pow_mod(pre[2000],mod-2);
    for(int i=1999;i>=0;i--)inv[i]=inv[i+1]*(i+1)%mod;
    scanf("%d%d",&n,&m);
    if((n+m)%2){puts("0");return 0;}
    m=(n+m)/2;
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)scanf("%d",&b[i]);
    sort(a+1,a+1+n);sort(b+1,b+1+n);
    int pa=0;
    for(int i=1;i<=n;i++)
    {
        while(b[pa+1]<a[i]&&pa<n)pa++;
        pos[i]=pa;
    }
    f[0][0]=1;
    for(int i=1;i<=n;i++)
        for(int j=0;j<=i;j++)
        {
            if(j!=0)f[i][j]=(f[i-1][j]+f[i-1][j-1]*max(0,pos[i]-j+1))%mod;
            else f[i][j]=f[i-1][j];
        }
    for(int i=n;i>=m;i--)
    {
        g[i]=f[n][i]*pre[n-i]%mod;
        for(int j=i+1;j<=n;j++)dl(g[i],g[j]*C(j,i)%mod);
    }
    printf("%lld\n",g[m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值