Description
Input
Output
Sample Input
4 2
5 35 15 45
40 20 10 30
Sample Output
4
HINT
输入的2*n个数字保证全不相同。
还有输入应该是第二行是糖果,第三行是药片
题解
DP呀..
从小到大排序
显然我们要找n+k2n+k2个糖果比药片大的组合
朴素dp方程,设f[i][j]f[i][j]表示前ii个中找到个合法组合 其它不管的数量
转移有
f[i][j]=f[i−1][j]+f[i−1][j−1]∗(pos[i]−j+1)f[i][j]=f[i−1][j]+f[i−1][j−1]∗(pos[i]−j+1)
其中pos[i]pos[i]表示ii最多能取到哪一位
会有重复
因为
a1>b1 a2>b2 a3>b3
选(a1,b1,a2,b2)和(a1,b1,a3,b3)会被判为两种不同情况
于是设表示nn个钟只有个合法情况的状态数
转移有
g[i]=f[n][i]∗(n−i)!−∑j=i+1ng[j]g[i]=f[n][i]∗(n−i)!−∑j=i+1ng[j]
前面表示只取i个,后面任选
然后去掉比i多的数目的算到i里的东西
就可以了。。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define mod 1000000009
#define LL long long
using namespace std;
LL pow_mod(LL a,LL b)
{
LL ret=1;
while(b)
{
if(b&1)ret=ret*a%mod;
a=a*a%mod;b>>=1;
}
return ret;
}
LL inv[2005],pre[2005];
LL C(int n,int m){return pre[n]*inv[m]%mod*inv[n-m]%mod;}
int a[2005],b[2005],n,m,pos[2005];
LL f[2005][2005],g[2005];
void dl(LL &x,LL y){x-=y;if(x<0)x+=mod;}
int main()
{
pre[0]=1;for(int i=1;i<=2000;i++)pre[i]=pre[i-1]*i%mod;
inv[2000]=pow_mod(pre[2000],mod-2);
for(int i=1999;i>=0;i--)inv[i]=inv[i+1]*(i+1)%mod;
scanf("%d%d",&n,&m);
if((n+m)%2){puts("0");return 0;}
m=(n+m)/2;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++)scanf("%d",&b[i]);
sort(a+1,a+1+n);sort(b+1,b+1+n);
int pa=0;
for(int i=1;i<=n;i++)
{
while(b[pa+1]<a[i]&&pa<n)pa++;
pos[i]=pa;
}
f[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=i;j++)
{
if(j!=0)f[i][j]=(f[i-1][j]+f[i-1][j-1]*max(0,pos[i]-j+1))%mod;
else f[i][j]=f[i-1][j];
}
for(int i=n;i>=m;i--)
{
g[i]=f[n][i]*pre[n-i]%mod;
for(int j=i+1;j<=n;j++)dl(g[i],g[j]*C(j,i)%mod);
}
printf("%lld\n",g[m]);
return 0;
}

本文介绍了一种使用动态规划(DP)算法解决特定组合问题的方法。通过将输入数据排序并应用DP状态转移方程,文章详细阐述了如何计算在一组糖果和药片中找到特定数量的组合,使得糖果的数量总是大于药片的数量。此外,还讨论了如何处理重复计数的问题,确保每种组合只被计算一次。



353

被折叠的 条评论
为什么被折叠?



