[BZOJ3622] 已经没有什么好害怕的了 [容斥原理][二项式反演]

[ L i n k \frak{Link} Link]


容斥基本形式 ∣ U ∩ A 1 ‾ ∩ A 2 ‾ ∩ ⋯ ∩ A n ‾ ∣ = ∑ S ⊆ A ( − 1 ) ∣ S ∣ ∣ U ∩ S 1 ∩ S 2 ∩ ⋯ ∩ S ∣ S ∣ ∣ \mathrm{|U\cap\overline{A_1}\cap\overline{A_2}\cap\cdots\cap\overline{A_n}|=\sum\limits_{S\subseteq A}(-1)^{|S|}|U\cap S_1\cap S_2\cap\cdots\cap S_{|S|}|} UA1A2An=SA(1)SUS1S2SS
反演基本形式 f n = ∑ i = 0 n a n i g i ⇔ g n = ∑ i = 0 n b n i f i f_n=\sum\limits_{i=0}^na_{ni}g_i\Leftrightarrow g_n=\sum\limits_{i=0}^nb_{ni}f_i fn=i=0nanigign=i=0nbnifi
也可以说是: F = A G ⇔ G = B F \mathbf F=\mathbf{AG}\Leftrightarrow \mathbf G=\mathbf{BF} F=AGG=BF 。则 B = A − 1 = A ∗ ∣ A ∣ \mathbf B=\mathbf A^{-1} = \dfrac{\mathbf A^*}{|\mathbf A|} B=A1=AA
(矩阵求逆暴力一点可以用高斯消元,把 [ A ∣ E ] [\mathbf{A|E}] [AE] 变成 [ E ∣ B ] [\mathbf{E|B}] [EB] 。不过反演一般不会这么搞)
反演成立的充要条件 ∑ j = i n a n j b j i = [ i = j ] \sum\limits_{j=i}^na_{nj}b_{ji}=[i=j] j=inanjbji=[i=j]


二项式定理 ( a + b ) n = ∑ r = 0 n ( n r ) a i b n − r (a+b)^n=\sum\limits_{r=0}^n{n\choose r}a^ib^{n-r} (a+b)n=r=0n(rn)aibnr
二项式反演 g n = ∑ i = 0 n ( − 1 ) i ( n i ) f i ⇔ f n = ∑ i = 0 n ( − 1 ) i ( n i ) g i g_n=\sum\limits_{i=0}^n(-1)^i{n\choose i}f_i\Leftrightarrow f_n=\sum\limits_{i=0}^n(-1)^i{n\choose i}g_i gn=i=0n(1)i(in)fifn=i=0n(1)i(in)gi
至多↔恰好 g n = ∑ i = 0 n ( n i ) f i ⇔ f n = ∑ i = 0 n ( − 1 ) n − i ( n i ) g i g_n=\sum\limits_{i=0}^n{n\choose i}f_i\Leftrightarrow f_n=\sum\limits_{i=0}^n(-1)^{n-i}{n\choose i}g_i gn=i=0n(in)fifn=i=0n(1)ni(in)gi
至少↔恰好 g i = ∑ j = i n ( j i ) f j ⇔ f i = ∑ j = i n ( − 1 ) j − i ( j i ) g j g_i=\sum\limits_{j=i}^n{j\choose i}f_j\Leftrightarrow f_i=\sum\limits_{j=i}^n(-1)^{j-i}{j\choose i}g_j gi=j=in(ij)fjfi=j=in(1)ji(ij)gj


一个套路:由 g n = ∑ i = 0 n − 1 ( n i ) f i + f n g_n=\sum\limits_{i=0}^{n-1}{n\choose i}f_i+f_n gn=i=0n1(in)fi+fn 得到 f n = g n − ∑ i = 0 n − 1 ( n i ) f i f_n=g_n-\sum\limits_{i=0}^{n-1}{n\choose i}f_i fn=gni=0n1(in)fi 就可以用 g g g f f f
如果继续拆就可以由原式推出反演。
f n = g n − ( n n − 1 ) f n − 1 − ∑ i = 0 n − 2 ( n i ) f i f_n=g_n-{n\choose n-1}f_{n-1}-\sum\limits_{i=0}^{n-2}{n\choose i}f_i fn=gn(n1n)fn1i=0n2(in)fi
f n = g n − ( n n − 1 ) g n − 1 + ( n n − 1 ) ∑ i = 0 n − 2 ( n − 1 i ) f i − ∑ i = 0 n − 2 ( n i ) f i f_n=g_n-{n\choose n-1}g_{n-1}+{n\choose n-1}\sum\limits_{i=0}^{n-2}{n-1\choose i}f_i-\sum\limits_{i=0}^{n-2}{n\choose i}f_{i} fn=gn(n1n)gn1+(n1n)i=0n2(in1)fii=0n2(in)fi
f n = g n − ( n n − 1 ) g n − 1 + ∑ i = 0 n − 2 [ ( n n − 1 ) ( n − 1 i ) f i − ( n i ) f i ] f_n=g_n-{n\choose n-1}g_{n-1}+\sum\limits_{i=0}^{n-2}\left[{n\choose n-1}{n-1\choose i}f_i-{n\choose i}f_i\right] fn=gn(n1n)gn1+i=0n2[(n1n)(in1)fi(in)fi]
f n = g n − ( n n − 1 ) g n − 1 + ∑ i = 0 n − 2 [ ( n i ) ( n − i n − 1 − i ) f i − ( n i ) f i ] f_n=g_n-{n\choose n-1}g_{n-1}+\sum\limits_{i=0}^{n-2}\left[{n\choose i}{n-i\choose n-1-i}f_i-{n\choose i}f_i\right] fn=gn(n1n)gn1+i=0n2[(in)(n1ini)fi(in)fi]
f n = g n − ( n n − 1 ) g n − 1 + ∑ i = 0 n − 2 ( n i ) ( n − i − 1 ) f i f_n=g_n-{n\choose n-1}g_{n-1}+\sum\limits_{i=0}^{n-2}{n\choose i}(n-i-1)f_i fn=gn(n1n)gn1+i=0n2(in)(ni1)fi
f n = g n − ( n n − 1 ) g n − 1 + ( n n − 2 ) g n − 2 − ∑ i = 0 n − 3 ( n − 2 i ) f i + ∑ i = 0 n − 3 ( n i ) ( n − i − 1 ) f i f_n=g_n-{n\choose n-1}g_{n-1}+{n\choose n-2}g_{n-2}-\sum\limits_{i=0}^{n-3}{n-2\choose i}f_i+\sum\limits_{i=0}^{n-3}{n\choose i}(n-i-1)f_i fn=gn(n1n)gn1+(n2n)gn2i=0n3(in2)fi+i=0n3(in)(ni1)fi
一直展开下去,猜想会得到 f n = ∑ i = 0 n ( − 1 ) n − i ( n i ) g i f_n=\sum\limits_{i=0}^n(-1)^{n-i}{n\choose i}g_i fn=i=0n(1)ni(in)gi 。证明一下,的确是。

遇到新的反演就可以这么推试试看(相信应该还有更好的方法,但是我实在找不到了)
不嫌麻烦的话说不定可以手模矩阵求逆,但是风险还比较大((


二项式反演是组合数形式的容斥。
在集合 U \mathrm U U 中,有 n n n 个具有不同性质元素的集合 A 1 , A 2 , ⋯   , A n \mathrm{A_1,A_2,\cdots,A_n} A1,A2,,An
考虑容斥的特殊情况:集族 Q = { A 1 , A 2 , ⋯   , A n } \mathrm{Q=\{A_1,A_2,\cdots,A_n\}} Q={A1,A2,,An} 中任意 i i i 个集合的并集大小为 g i g_i gi

那么 g i = ∣ A 1 ∩ A 2 ∩ ⋯ ∩ A i ∣ g_i=\mathrm{|A_1\cap A_2\cap\cdots\cap A_i|} gi=A1A2Ai ,在 Q \mathrm Q Q 中有 ( n i ) n\choose i (in) 个这样的不同交集。定义 g 0 = ∣ U ∣ g_0=|\mathrm U| g0=U
由容斥原理有 ∣ A 1 ‾ ∩ A 2 ‾ ∩ ⋯ ∩ A n ‾ ∣ = ∣ U ∣ − ∑ S ⊆ A ( − 1 ) ∣ S ∣ ∣ S 1 ∩ S 2 ∩ ⋯ ∩ S ∣ S ∣ ∣ \mathrm{|\overline{A_1}\cap\overline{A_2}\cap\cdots\cap\overline{A_n}|=|U|-\sum\limits_{S\subseteq A}(-1)^{|S|}|S_1\cap S_2\cap\cdots\cap S_{|S|}|} A1A2An=USA(1)SS1S2SS
f n = ∣ A 1 ‾ ∩ A 2 ‾ ∩ ⋯ ∩ A n ‾ ∣ = ∑ i = 0 n ( − 1 ) i ( n i ) g i f_n=\mathrm{|\overline{A_1}\cap\overline{A_2}\cap\cdots\cap\overline{A_n}|=}\sum\limits_{i=0}^n(-1)^i{n\choose i}g_i fn=A1A2An=i=0n(1)i(in)gi
定义 f i = ∣ A 1 ‾ ∩ A 2 ‾ ∩ ⋯ ∩ A i ‾ ∣ f_i=\mathrm{|\overline{A_1}\cap\overline{A_2}\cap\cdots\cap\overline{A_i}|} fi=A1A2Ai f 0 = ∣ U ∣ f_0=|\mathrm U| f0=U ,有
g n = ∣ A 1 ∩ A 2 ∩ ⋯ ∩ A n ∣ = ∑ i = 0 n ( − 1 ) i ( n i ) f i g_n=\mathrm{|A_1\cap A_2\cap\cdots\cap A_n|=}\sum\limits_{i=0}^n(-1)^i{n\choose i}f_i gn=A1A2An=i=0n(1)i(in)fi


首先为了方便把两个数组分别从小到大排序。

假设计数时的某种情况下糖果 a i a_i ai ,药片 b j b_{j} bj i , j ≤ n i,j\le n i,jn
题目要求计数的是 ∑ i = 1 n [ a i > b i ] = ∑ i = 1 n [ b i > a i ] + k \sum\limits_{i=1}^n[a_i>b_i]=\sum\limits_{i=1}^n[b_i>a_i]+k i=1n[ai>bi]=i=1n[bi>ai]+k 的情况数。


想容斥:固定前面的一部分,然后后面的一部分容斥。
考虑安排 b i > a i b_i>a_i bi>ai 一类的,可以对每个 a i a_i ai 预处理 b j b_j bj 到哪里为止都小于 a i a_i ai ,存为 s i s_{i} si
安排的时候固定 a a a b b b 中的一组,只拿另一组去配对 。

前面一部分可以算:到 i i i 为止,配对了 j j j a x > b x a_x>b_x ax>bx x ≤ i x\le i xi)的方案数 t i , j t_{i,j} ti,j
(没有配对的部分啥都没有)

t i , j = t i − 1 , j + [ g i > j − 1 ] [ ( s i − j + 1 ) t i − 1 , j − 1 ] t_{i,j}=t_{i-1,j}+[g_i>j-1][(s_i-j+1)t_{i-1,j-1}] ti,j=ti1,j+[gi>j1][(sij+1)ti1,j1]
n n n 为止, 至少 i i i a x > b x a_x>b_x ax>bx 的方案数
(这个表述可能听起来有点奇怪,从 dp 式子观察,它实际上是指已知 i i i 对剩下的瞎排)
(所以说是这么说,实际上跟意义不相符的是它会重复计数。。。)
(稍微思考一下就知道了。)
,设为 f i f_{i} fi ,有 f i = t n , i ( n − i ) ! f_{i}=t_{n,i}(n-i)! fi=tn,i(ni)!

“ 至少 ” 容易求,考虑二项式反演。把原问题转化成求:
n n n 为止, 恰好 n + k 2 \frac{n+k}{2} 2n+k a x > b x a_x>b_x ax>bx 的方案数。( n + k n+k n+k 为奇数要讨论)


要知道答案,首先要知道到 n n n 为止 恰好 i i i a x > b x a_x>b_x ax>bx 的方案数。设为 g i g_{i} gi

考虑一下 g j g_j gj f i f_i fi 的关系 ( i ≤ j ≤ n i\le j\le n ijn)。 g j g_j gj 可能会在 f i f_i fi 里面被多算。算了几次?
g j g_j gj j j j a x > b x a_x>b_x ax>bx t n , i t_{n,i} tn,i 要求包含 i i i a x > b x a_x>b_x ax>bx
j j j 对里面选 i i i 对,那么 g j g_j gj f i f_i fi 的贡献就是 ( j i ) j\choose i (ij)


按照减去多算的部分的思路, g i = f i − ∑ j = i + 1 n ( j i ) g j g_i=f_i-\sum\limits_{j=i+1}^n{j\choose i}g_j gi=fij=i+1n(ij)gj


如果考虑到 f i = ∑ j = i n ( j i ) g j f_i=\sum\limits_{j=i}^n{j\choose i}g_j fi=j=in(ij)gj 就可以二项式反演 g i = ∑ j = i n ( − 1 ) j − i ( j i ) f j g_i=\sum\limits_{j=i}^n(-1)^{j-i}{j\choose i}f_j gi=j=in(1)ji(ij)fj
不知道也可以做,把 g i g_i gi 从和号里面拆出来,稍作变换得 g i = f i − ∑ j = i + 1 n ( j i ) g j g_i=f_i-\sum\limits_{j=i+1}^n{j\choose i}g_j gi=fij=i+1n(ij)gj


#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cctype>
#include <cmath>
using namespace std;
const long long MOD = 1000000009ll;
int n, k, m;
long long a[2005], b[2005];
long long c[2005][2005], f[2005], p[2005];
#define adjust(x) (x>=MOD)?(x-MOD):x
int main() {
	scanf("%d%d", &n, &k);
	if (n + k & 1) return printf("0"), 0;
	for (register int i = 1; i <= n; ++i) scanf("%lld", &a[i]);
	for (register int i = 1; i <= n; ++i) scanf("%lld", &b[i]);
	for (register int i = 0, j; i <= n; ++i) {
		for (j = 1, c[i][0] = 1; j <= i; ++j) {
			c[i][j] = adjust(c[i-1][j-1] + c[i-1][j]);
		}
	}
	p[0] = 1ll;
	for (register int i = 1; i <= n; ++i) {
		p[i] = 1ll * i * p[i-1] % MOD;
	}
	sort(a+1, a+1+n);
	sort(b+1, b+1+n);
	f[0] = 1ll;
	for (register int z = 1, i = 1, j; i <= n; ++i) {
		while (z <= n && a[i] > b[z]) ++z;
		for (--z, j = i; j >= 1; --j) {
			f[j] = (f[j] + f[j - 1] * max(0, z - j + 1)) % MOD;
		}
	}
	m = n + k >> 1;
	for (register int i = n; i >= m; --i) {
		f[i] = f[i] * p[n - i] % MOD;
		for (register int j = i + 1; j <= n; ++j) {
			f[i] = (f[i] - c[j][i] * f[j] % MOD + MOD) % MOD;
		}
	}
	printf("%lld",f[m]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值