[bzoj2154][莫比乌斯反演]Crash的数字表格

Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a,
b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) =
24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i,
j)。一个4
5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20
看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod
20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122

HINT

【数据规模和约定】

100%的数据满足N, M ≤ 10^7。

题解

就是要求 ∑ i ∑ j i ∗ j g c d ( i , j ) \sum_i\sum_j \frac{i*j}{gcd(i,j)} ijgcd(i,j)ij
枚举一下gcd就是 ∑ d 1 d ∑ i ∑ j [ g c d ( i , j ) = 1 ] i ∗ j \sum_d\frac{1}{d}\sum_i\sum_j[gcd(i,j)=1]i*j dd1ij[gcd(i,j)=1]ij
然后考虑怎么处理 i ∗ j i*j ij,设 F [ Q ] F[Q] F[Q]表示 g c d ( x , y ) gcd(x,y) gcd(x,y)为Q的倍数的数对乘积和
显然可以有 Q ∗ Q ∗ ⌊ n Q ⌋ 2 ∗ Q ∗ Q ∗ ⌊ m Q ⌋ 2 \frac{Q*Q*\lfloor\frac{n}{Q}\rfloor}{2}*\frac{Q*Q*\lfloor\frac{m}{Q}\rfloor}{2} 2QQQn2QQQm
然后莫反一下就可以知道是
∑ i m i n ( n , m ) ∑ j ⌊ m i n ( n , m ) i ⌋ μ ( j ) ∗ i ∗ j ∗ j ∗ ( 1 + ⌊ n i ∗ j ⌋ ) ∗ ⌊ n i ∗ j ⌋ 2 ∗ ( 1 + ⌊ m i ∗ j ⌋ ) ∗ ⌊ m i ∗ j ⌋ 2 \sum_i^{min(n,m)}\sum_j^{\lfloor\frac{min(n,m)}{i}\rfloor}\mu(j)*i*j*j*\frac{(1+\lfloor\frac{n}{i*j}\rfloor)*\lfloor\frac{n}{i*j}\rfloor}{2}*\frac{(1+\lfloor\frac{m}{i*j}\rfloor)*\lfloor\frac{m}{i*j}\rfloor}{2} imin(n,m)jimin(n,m)μ(j)ijj2(1+ijn)ijn2(1+ijm)ijm
先对i数论分块,再对j数论分块
复杂度就是 O ( n ) O(n) O(n)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<ctime>
#include<map>
#include<bitset>
#include<set>
#define LL long long
#define mp(x,y) make_pair(x,y)
#define pll pair<long long,long long>
#define pii pair<int,int>
using namespace std;
inline int read()
{
	int f=1,x=0;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int stack[20];
inline void write(int x)
{
	if(x<0){putchar('-');x=-x;}
    if(!x){putchar('0');return;}
    int top=0;
    while(x)stack[++top]=x%10,x/=10;
    while(top)putchar(stack[top--]+'0');
}
inline void pr1(int x){write(x);putchar(' ');}
inline void pr2(int x){write(x);putchar('\n');}
const int mod=20101009;
const int MAXN=10000005;
const int N=10000000;
const int inv2=17588383;
LL mu[MAXN];
int pr[MAXN],plen,n,m;
bool v[MAXN];
void getmu()
{
	v[1]=true;mu[1]=1;
	for(int i=2;i<=N;++i)
	{
		if(!v[i])mu[i]=-1,pr[++plen]=i;
		for(int j=1;j<=plen&&i*pr[j]<=N;++j)
		{
			v[i*pr[j]]=true;
			if(!(i%pr[j])){mu[i*pr[j]]=0;break;}
			else mu[i*pr[j]]=-mu[i];
		}
	}
	for(int i=1;i<=N;++i)mu[i]=(mu[i-1]+(LL)mu[i]*i*i)%mod;
}
inline int _min(int a,int b){return a<b?a:b;}
int main()
{
//	freopen("a.in","r",stdin);
//	freopen("a.out","w",stdout);
	getmu();
	n=read();m=read();
	int nxt1,nxt2,lim1=min(n,m),lim2,n1,m1;
	LL ans=0;
	for(int i=1;i<=lim1;i=nxt1+1)
	{
		nxt1=_min(n/(n/i),m/(m/i));
		n1=n/i,m1=m/i;lim2=min(n1,m1);
		LL re=0;
		for(int j=1;j<=lim2;j=nxt2+1)
		{
			nxt2=_min(n1/(n1/j),m1/(m1/j));
			re=(re+(mu[nxt2]-mu[j-1])%mod*(1+(n1/j))%mod*(n1/j)%mod*(1+(m1/j))%mod*(m1/j))%mod;
//			ans=(ans+i*(mu[nxt2]-mu[j-1])%mod*(1+(n1/j))*(n1/j)/2%mod*(1+(m1/j))*(m1/j)/2%mod+mod)%mod;
		}
		ans=(ans+(LL)(i+nxt1)*(nxt1-i+1)%mod*re)%mod;
	}
	pr2(ans*inv2%mod);
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值