[bzoj5125][决策单调性分治][DP]小Q的书架

123 篇文章 1 订阅
7 篇文章 0 订阅

Description

懒得抠了在这里

题解

实际上就是把区间分成若干块,每块的逆序对总和最小
朴素dp不难想到是
f [ i ] [ j ] = m i n ( f [ k ] [ j − 1 ] + s o l v e ( k + 1 , i ) ) f[i][j]=min(f[k][j-1]+solve(k+1,i)) f[i][j]=min(f[k][j1]+solve(k+1,i))
其中 s o l v e ( x , y ) solve(x,y) solve(x,y)表示x->y的逆序对数
然后似乎没有什么可以优化的地方
仔细想一想,删去一个数一定不会使逆序对增加,而显然这个f数组是有单调不减性的
所以其实他是具有决策单调性的
但是这里我们又不能直接移决策点,因为点的贡献可能是不单调的
考虑一个这样的分治
q r y ( d e p , l 1 , r 1 , l 2 , r 2 ) qry(dep,l1,r1,l2,r2) qry(dep,l1,r1,l2,r2)表示分成了 d e p dep dep块,其中需要贡献的点在 [ l 1 , r 1 ] [l1,r1] [l1,r1],决策点都在 [ l 2 , r 2 ] [l2,r2] [l2,r2]
每次把贡献点的 m i d mid mid拿出来暴力求决策点,显然后面的都在后面, 前面的都在前面
注意这里其实不能暴力求逆序对,要像莫队那样移端点…
因为分治树中每个点会贡献一个新点,总共就多出了 n l o g n nlogn nlogn个点,复杂度就会变成 l o g 3 log^3 log3

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<ctime>
#include<map>
#include<bitset>
#include<set>
#define LL long long
#define mp(x,y) make_pair(x,y)
#define pll pair<long long,long long>
#define pii pair<int,int>
using namespace std;
inline int read()
{
	int f=1,x=0;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int stack[20];
inline void write(LL x)
{
	if(x<0){putchar('-');x=-x;}
    if(!x){putchar('0');return;}
    int top=0;
    while(x)stack[++top]=x%10,x/=10;
    while(top)putchar(stack[top--]+'0');
}
inline void pr1(int x){write(x);putchar(' ');}
inline void pr2(LL x){write(x);putchar('\n');}
const int MAXN=40005;
const int MAXK=15;

int s[MAXN],n,K;
int lowbit(int x){return x&-x;}
void change(int x,int c){if(!x)return ;for(;x<=n;x+=lowbit(x))s[x]+=c;}
int findsum(int x)
{
	int ret=0;
	for(;x>=1;x-=lowbit(x))ret+=s[x];
	return ret;
}

LL f[MAXN][MAXK];
int a[MAXN];

int L,R;
LL sum,g1,g2;
void upl(int now,int c)
{
	sum+=c*findsum(a[now]-1);
	change(a[now],c);
}
void upr(int now,int c)
{
	sum+=c*(findsum(n)-findsum(a[now]));
	change(a[now],c);
}
void turn(int l,int r)
{
	while(L>l)upl(--L,1);
	while(L<l)upl(L++,-1);
	while(R<r)upr(++R,1);
	while(R>r)upr(R--,-1);
}
void qry(int now,int l1,int r1,int l2,int r2)//状态区间  决策区间 
{
	if(l1>r1)return ;
	if(l2==r2)
	{
		turn(l2+1,l1-1);
		for(int i=l1;i<=r1;i++)
		{
			upr(++R,1);
			f[i][now]=f[l2][now-1]+sum;
		}
		return ;
	}
	
	int mid=(l1+r1)/2;
	int pos;
	turn(l2,mid);
	for(int i=l2;i<=min(mid,r2);i++)
	{
		upl(L++,-1);
		if(f[mid][now]>f[i][now-1]+sum)f[mid][now]=f[i][now-1]+sum,pos=i;
	}
	qry(now,l1,mid-1,l2,pos);
	qry(now,mid+1,r1,pos,r2);
	
	return ;
	
}
int main()
{
	n=read();K=read();
	for(int i=1;i<=n;i++)a[i]=read();
	L=0;
	while(R<n)upr(++R,1);
	memset(f,63,sizeof(f));f[0][0]=0;
	for(int i=1;i<=K;i++)
		qry(i,0,n,0,n);
	pr2(f[n][K]);
	return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值