[BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组+莫队?)

\(O(n^2k)\)比较好想

\(dp[i][j]=\min\limits_{k<i}(dp[k][j-1]+w(k+1,i))\)

\(w\)就是逆序对个数。

打表发现有决策单调性。

但是我们发现逆序对个数不能很快的算,所以单调队列用不了了。

考虑分治,

\(solve(l,r,L,R,k)\)表示要计算的部位为\([l,r]\),可能决策点位于\([L,R]\)内,于是暴力算出\(mid\)的最优决策点\(p\),两边递归下去dp

/*
@Date    : 2019-08-16 21:14:43
@Author  : Adscn (adscn@qq.com)
@Link    : https://www.cnblogs.com/LLCSBlog
*/
#include<bits/stdc++.h>
using namespace std;
#define IL inline
#define RG register
#define int long long
#define gi getint()
#define gc getchar()
#define File(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
IL int getint()
{
    RG int xi=0;
    RG char ch=gc;
    bool f=0;
    while(ch<'0'||ch>'9')ch=='-'?f=1:f,ch=gc;
    while(ch>='0'&&ch<='9')xi=(xi<<1)+(xi<<3)+ch-48,ch=gc;
    return f?-xi:xi;
}
template<typename T>
IL void pi(T k,char ch=0)
{
    if(k<0)k=-k,putchar('-');
    if(k>=10)pi(k/10,0);
    putchar(k%10+'0');
    if(ch)putchar(ch);
}
const int N=4e4+7;
int n,K,sum;
int c[N],a[N],f[N][11];
void add(int k,int x){for(;k<=n;k+=k&-k)c[k]+=x;}
int qry(int x){int ans=0;for(;x;x-=x&-x)ans+=c[x];return ans;}
int L,R;
void move(int l,int r){
    while(L<l)sum-=qry(a[L]-1),add(a[L++],-1);
    while(L>l)sum+=qry(a[L-1]-1),add(a[--L],1);
    while(R<r)sum+=R-L+1-qry(a[R+1]),add(a[++R],1);
    while(R>r)sum-=R-L+1-qry(a[R]),add(a[R--],-1);
}
void solve(int l,int r,int L,int R,int now)
{
    if(l>r)return;
    int mid=(l+r)>>1,p=L;
    for(int i=L;i<=min(mid-1,R);++i)
    {
        move(i+1,mid);
        if(f[i][now-1]+sum<f[mid][now])f[mid][now]=f[i][now-1]+sum,p=i;
    }
    solve(l,mid-1,L,p,now);
    solve(mid+1,r,p,R,now);
}
signed main(void)
{
    n=gi,K=gi;
    for(int i=1;i<=n;++i)a[i]=gi;
    memset(f,127,sizeof f);
    L=1,R=0;
    for(int i=1;i<=n;++i)move(1,i),f[i][1]=sum;
    for(int i=2;i<=K;++i)solve(1,n,1,n,i);
    pi(f[n][K]);
    return 0;
}

转载于:https://www.cnblogs.com/LLCSBlog/p/11366472.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值