什么是贪心算法?
和大多数计算机科学的术语一样,贪心算法(greedy algorithm)策略被命名得非常地契合。被归类为贪心算法:在做出选择的时候,算法总是选择目前看起来最好的选择。因此,这种算法也被叫做贪婪策略。
举个栗子:
如果总共有42美分,那么最少有多少个硬币?在美国,你可以选择的硬币有25美分、10美分、5美分、2美分这几个。这是一个可以用贪婪策略来解决的问题。贪婪策略总会选择能够选的最大的硬币。因此从42美分开始,我们先选一个25美分的硬币,还剩下17美分。现在我们可以选择的最大的硬币是10美分的硬币,于是还有7美分。这个时候可以用的最大硬币是5美分的,以及一个2美分的硬币。
贪心实例
小船过河问题 这是一道经典的贪心算法例题。题目大意是只有一艘船,能乘2人,船的运行速度为2人中较慢一人的速度,过去后还需一个人把船划回来,问把n个人运到对岸,最少需要多久。先将所有人过河所需的时间按照升序排序,我们考虑把单独过河所需要时间最多的两个旅行者送到对岸去,有两种方式: 1.最快的和次快的过河,然后最快的将船划回来;次慢的和最慢的过河,然后次快的将船划回来,所需时间为:t[0]+2t[1]+t[n-1]; 2.最快的和最慢的过河,然后最快的将船划回来,最快的和次慢的过河,然后最快的将船划回来,所需时间为:2t[0]+t[n-2]+t[n-1]。 算一下就知道,除此之外的其它情况用的时间一定更多。每次都运送耗时最长的两人而不影响其它人,问题具有贪心子结构的性质。
代码:
#include<iostream> #include<algorithm> using namespace std; int main() { int a[1000],t,n,sum; scanf("%d",&t); while(t--) { scanf("%d",&n); sum=0; for(int i=0;i<n;i++) scanf("%d",&a[i]); while(n>3) { sum=min(sum+a[1]+a[0]+a[n-1]+a[1],sum+a[n-1]+a[0]+a[n-2]+a[0]); n-=2; } if(n==3) sum+=a[0]+a[1]+a[2]; else if(n==2) sum+=a[1]; else sum+=a[0]; printf("%d\n",sum); } }