布线问题
时间限制:1000 ms | 内存限制:65535 KB
难度:4
描述
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
输入
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0 < e < v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。
样例输入
1
4 6
1 2 10
2 3 10
3 1 10
1 4 1
2 4 1
3 4 1
1 3 5 6
样例输出
4
题解:题中就是让你用一棵最小生成树将所有的楼连起来,然后又分别给每个楼一个权值,找一个权值最小的楼最为根就行了。
直接prim后用MST加上一个最小楼权值输出。
//
// main.cpp
// NYOJ-38-布线问题
//
// Created by 袁子涵 on 15/11/25.
// Copyright © 2015年 袁子涵. All rights reserved.
//
// 52ms 1252KB
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#define MAXS 0x7fffffff
using namespace std;
const int MAXN=510;
bool vis[MAXN];
long long int lowc[MAXN];
int cost[MAXN][MAXN];
long long int Prim(long long int n)
{
long long int ans=0;
memset(vis, 0, sizeof(vis));
vis[0]=1;
for (int i=1; i<n; i++)
lowc[i]=cost[0][i];
for (int i=1; i<n; i++) {
long long int minc=MAXS;
int p=-1;
for (int j=0; j<n; j++)
if (!vis[j] && minc>lowc[j]) {
minc=lowc[j];
p=j;
}
if (minc == MAXS)
return -1;
ans+=minc;
vis[p]=1;
for (int j=0; j<n; j++) {
if (!vis[j] && lowc[j]>cost[p][j])
lowc[j]=cost[p][j];
}
}
return ans;
}
int main(int argc, const char * argv[]) {
int n;
cin >> n;
while (n--) {
int v,e,a,b,c;
cin >> v >> e;
for (int i=0; i<v; i++) {
for (int j=0; j<v; j++) {
if (i==j) {
cost[i][j]=0;
}
else
cost[i][j]=MAXS;
}
}
for (int i=1; i<=e; i++) {
scanf("%d %d %d",&a,&b,&c);
cost[a-1][b-1]=min(cost[a-1][b-1],c);
cost[b-1][a-1]=min(cost[b-1][a-1],c);
}
long long int sum=Prim(v);
int temp=MAXS;
for (int i=1; i<=v; i++) {
scanf("%d",&a);
temp=min(temp,a);
}
sum+=temp;
cout << sum << endl;
}
return 0;
}