并查集+Set-BZOJ-1604-[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居

Description
了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi≤[1..10^9];Xi,Yi∈整数.当满足下列两个条件之一,两只奶牛i和j是属于同一个群的:
1.两只奶牛的曼哈顿距离不超过C(1≤C≤10^9),即lXi - xil+lYi - yil≤C.
2.两只奶牛有共同的邻居.即,存在一只奶牛k,使i与k,j与k均同属一个群.
给出奶牛们的位置,请计算草原上有多少个牛群,以及最大的牛群里有多少奶牛
Input

第1行输入N和C,之后N行每行输入一只奶牛的坐标.
Output

仅一行,先输出牛群数,再输出最大牛群里的牛数,用空格隔开.
Sample Input
4 2

1 1

3 3

2 2

10 10

Line 1: A single line with a two space-separated integers: the

    number of cow neighborhoods and the size of the largest cow

    neighborhood.

Sample Output
2 3

OUTPUT DETAILS:

There are 2 neighborhoods, one formed by the first three cows and

the other being the last cow. The largest neighborhood therefore

has size 3.

题解:
很早就开了这道题,一直没有A掉,今天课上无聊补了一发相关姿势,还是学了老半天才会,1A。
一般遇到这种二维的距离题,都可以在数学上做文章,此题用到曼哈顿距离,那么我们把公式|Xi-xi|+|Yi-yi|拆开,成了下面4个表达式。
(1)Xi-xi+Yi-yi
(2)Xi-xi+yi-Yi
(3)xi-Xi+Yi-yi
(4)xi-Xi+yi-Yi
那么其实可以将(1)(4)式合并为|(Xi+Yi)-(xi+yi)|,把(2)(3)式合并为|(Xi-Yi)-(xi-yi)|。
我们用A来代替x+y,B来代替x-y,则其实只要max(Ai-ai,Bi-bi)<=c就满足题目中距离要求了。
那么我们对于每个点(牛),都用A,B去表示。只需要先整体以A大小为标准进行一次排序,然后维护一个队列,使得队列中队首的A与队尾的A之差小于c即可,这样保证了队列中的点都是满足delta(A)不大于c的。同时利用set的平衡二叉树高效查询,维护队列中点的B值,遍历到一个点时,先得到满足当前情况的队列,然后得出以该点的B应该处于set中哪个位置,并与前后的B进行比较,满足delta(B)不大于c的就合并。
最后扫一下father数组就可以得答案了。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <set>
#include <vector>
#define MAXN 100005
#define INF 0x3f3f3f3f
using namespace std;
long long int c,n;
long long int father[MAXN];
long long int total,head;
typedef struct node
{
    long long int x,y;
    bool operator <(const node&r)const
    {
        return x<r.x;
    }
}node;
multiset<node>S;
multiset<node>::iterator it;
node N[MAXN];
long long int find(long long int num)
{
    long long int root,tmp,now=num;
    while(father[now]!=now)
    {
        now=father[now];
    }
    root=now;
    now=num;
    while(father[now]!=now)
    {
        tmp=father[now];
        father[now]=root;
        now=tmp;
    }
    return root;
}
void unit(long long int a,long long int b)
{
    long long int fa=find(a),fb=find(b);
    if(fa!=fb)
        father[fa]=fb;
}
long long int num[MAXN];
int main()
{
    long long int x,y;
    cin >> n >> c;
    for(long long int i=1;i<=n;i++)
    {
         scanf("%lld %lld",&x,&y);
        N[i].x=x+y,N[i].y=x-y;
        father[i]=i;
    }
    sort(N+1,N+n+1);
    S.insert(node{-INF,0}),S.insert(node{INF,0});
    head=1;
    for(long long int i=1;i<=n;i++)
    {
        while(N[i].x-N[head].x>c)
        {
            it=S.find(node{N[head].y,head});
            S.erase(it);
            head++;
        }
        it=S.lower_bound(node{N[i].y,i});
        node tmp1,tmp2;
        tmp1=*it;
        tmp2=*(--it);
        if(tmp1.x-N[i].y<=c)
            unit(tmp1.y,i);
        if(N[i].y-tmp2.x<=c)
            unit(tmp2.y,i);
        S.insert(node{N[i].y,i});
    }
    long long int out1=0,out2=0;
    for(long long int i=1;i<=n;i++)
        num[find(i)]++;
    for(long long int i=1;i<=n;i++)
    {
        if(num[i])
        {
            out1++;
            out2=max(out2,num[i]);
        }
    }
    cout << out1 << " " << out2 << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值