- MobileNet的出现动机
- 神经网络的两个发展方向
- 现有的缩减模型的方法
- MobileNet论文使用的方法
- 应用领域
- 最终成果
- MobileNet结构
- 标准卷积块和深度可分离卷积块的对比
- 深度可分离卷积
- MobileNet超参数
- MobileNet v2创新点
- MobileNet v3创新点
MobileNet的出现动机
① 为了追求更高的准确率,自AlexNet依赖,神经网络更加倾向于更深,更复杂的设计机构,这就导致对GPU的需求提高,但往往现实生活中很难达到。
② 在实际生活中,识别任务更需要是在有限的计算环境下实时计算。因为基本都是在移动端进行的。例如:自动驾驶,机器人视觉,增强现实。
神经网络的两个发展方向
- 轻量化
SqueezeNet
MobileNet
shuffleNet
Xception - 网络深度
AlexNet
VGGNet
GoogleNet
ResNet
DenseNet
SENet
现有的缩减模型的方法
① 模型压缩:在已经训练好的模型上进行压缩,使得网络携带更少的网络参数
② 直接训练一个小型网络:从改变网络结构出发,设计出更高效地网络计算方式,从而使得网络参数减少的同时,不损失网络的性能。
MobileNet论文使用的方法
- 提出了一类新型网