MATLAB概率统计

2、概率密度计算

概率密度计算的通用调用格式:

y1=pdf('bino',X,N,P);%二项分布(bino或Binominal),N表示伯努利试验次数,P表示每次发生的概率
y2=pdf('poiss',X,L);%泊松分布(poiss或Poisson),L表示泊松指数
y3=pdf('hyge',X,N,M,n);%超几何分布(hyge或Hypergeometric),N表示产品数量,M表示次品数量,n表示抽样数量
y4=pdf('unif',X,a,b);%均匀分布(unif或Uniform),a、b表示均匀分布区间
y5=pdf('exp',x,theta);%指数分布(exp或Exponential)
y6=pdf('norm',x,mu,sigma);%正态分布(norm或Normal)

3、累计概率分布

累计概率分布的通用调用格式:

y1=cdf('bino',X,N,P);%二项分布(bino或Binominal),N表示伯努利试验次数,P表示每次发生的概率
y2=cdf('poiss',X,L);%泊松分布(poiss或Poisson),L表示泊松指数
y3=cdf('hyge',X,N,M,n);%超几何分布(hyge或Hypergeometric),N表示产品数量,M表示次品数量,n表示抽样数量
y4=cdf('unif',X,a,b);%均匀分布(unif或Uniform),a、b表示均匀分布区间
y5=cdf('exp',x,theta);%指数分布(exp或Exponential)
y6=cdf('norm',x,mu,sigma);%正态分布(norm或Normal)

4、统计特征

4.1、平均数、中值

A=magic(5);
M1=mean(A);%平均数
M2=median(A);%中位数
M3=nanmedian(A);%忽略NaN的中位数
M4=geomean(A);%几何平均数
M5=harmmean(A);%调和平均数

4.2、数据排序、解值域

A=rand(5);
Y1=sort(A);%排序矩阵 
Y2=sortrows(A);%按行排序
Y3=range(A);%计算每列最大值最小值的差

4.3、方差和标准差

X=randn(2,8);
DX=var(X');
DX1=var(X',1);
S=std(X',1);
S1=std(X');
MATLAB是一个高性能的数值计算和可视化软件,它提供了一系列的工具箱用于进行概率统计分析。在概率统计方面,MATLAB可以执行包括数据的整理、分析、可视化以及统计模型的构建等任务。以下是MATLAB概率统计领域的一些主要功能: 1. 数据处理:MATLAB可以轻松读取和存储数据,支持各种数据格式,包括文本文件、Excel文件、数据库连接等。用户还可以使用MATLAB的内置函数进行数据清洗和预处理,比如去除缺失值、异常值处理等。 2. 描述性统计分析:MATLAB提供了描述性统计分析的功能,能够计算数据集的均值、中位数、众数、方差、标准差、峰度、偏度等统计量,帮助用户快速了解数据的分布特征。 3. 假设检验:在MATLAB中,可以进行多种假设检验,例如t检验、卡方检验、F检验等,用于检验数据的统计假设,判断不同数据集之间是否存在显著差异。 4. 回归分析:MATLAB拥有强大的回归分析工具,可以进行线性回归、多元回归分析,并通过图形化界面辅助理解数据的线性关系。 5. 概率分布:MATLAB提供了广泛的概率分布函数,包括二项分布、正态分布、泊松分布等,用户可以利用这些分布函数进行概率计算,生成随机样本,以及进行分布拟合等。 6. 随机数生成:MATLAB可以生成服从各种概率分布的随机数,这些随机数可以用于模拟实验、蒙特卡洛模拟等应用。 7. 统计图表:通过MATLAB提供的各种图表绘制工具,用户可以轻松地创建柱状图、饼图、箱形图、直方图、散点图等统计图表,以直观展示数据的统计特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Scikit-learn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值