现有的人脸数据库介绍及下载链接

在国际上已有的一些人脸数据库:
Yale人脸库(美国):
耶鲁大学,15人,每人11张照片,主要包括光照条件的变化,表情的变化等。
ORL人脸库(英国):
剑桥大学,40人,每人10张照片,包括表情变化,微小姿态变化,20%以内的尺度变化。
FERET人脸库(美国):
为 了促进人脸识别算法的研究和实用化,美国国防部的Counterdrug Technology Transfer Program(CTTP)发起了一个人脸识别技术(Face Recognition Technology 简称FERET)工程,它包括了一个通用人脸库以及通用测试标准。同一人的包括不同表情,光照,姿态和年龄的照片,到1997年,它已经包括了1000多 人的10000多张照片,并不断得到扩充,FERET定期对不同识别算法进行测试。
CMU PIE人脸库(美国):
卡 耐基梅隆大学,所谓PIE就是姿态(POSE),光照(ILLUMINATION)和表情(EXPRESSION)的缩写,CMU PIE人脸库建立于2000年11月,它包括来自68个人的40000张照片,其中包括了每个人的13种姿态条件,43种光照条件和4种表情下的照片,现 有的多姿态人脸识别的文献基本上都是在CMU PIE人脸库上测试的。
UMIST人脸库(英国):
曼彻斯特大学,20人,总共564张照片,姿态变化。
Bern人脸库(徳国):
Bern 大学,30人,每人10张灰度图像,主要包括人脸不同姿态的变化。
AR人脸库(美国):
Purdue 大学,126人的彩色照片,光照,尺度和表情变化。

Database Overview
Surveys
1、Humaine - a collection of emotional databases:
http://emotion-research.net/wiki/Databases 
2、AR Face Database (AR): 
http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html 
3、BioID Face Database (BioID): 
http://www.humanscan.de/support/downloads/facedb.php 
4、Brodatz Texture Database (Brodatz): 
5、Butterfly Database (BDB): 
http://www-cvr.ai.uiuc.edu/ponce_grp/data 
6、CMU Frontal Face Database (CMUFF): 
http://vasc.ri.cmu.edu//idb/html/face/frontal_images/index.html 
7、CMU PIE Database (CMUPIE): 
http://www.ri.cmu.edu/projects/project_418.html 
8、CMU Profile Face Database (CMUPF): 
http://vasc.ri.cmu.edu//idb/html/face/profile_images/index.html 
9、Columbia-Utrecht Reflectance and Texture Database (CUReT): 
10、Corel Gallery Magic 65000 (CGM): 
11、CVL Database (CVL): 
http://www.lrv.fri.uni-lj.si/facedb.html 
12、Data Becker 222222 Premium Cliparts (DBPC): 
13、M2VTS Multimodal Face Database (): 
http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html 
14、MIT CBCL Car Database (MITC): 
http://cbcl.mit.edu/cbcl/software-datasets/CarData.html 
15、MIT CBCL Face Database (MITF): 
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html 
16、MIT CBCL Face Recognition Database (): 
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html 
17、MIT CBCL Pedestrian Database (MITP): 
http://cbcl.mit.edu/cbcl/software-datasets/PedestrianData.html 
18、Object Recognition Database (ORDB): 
http://www-cvr.ai.uiuc.edu/ponce_grp/data 
19、ORL Database of Faces (ORL): 
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
20、OUTex (OUTex): 
21、PETS 2000 Dataset (PETS2000): 
22、PETS 2001 Dataset (PETS2001): 
23、PETS 2002 Dataset (PETS2002): 
24、PETS 2005 Dataset (PETS2005): 
25、PETS-ECCV 2004 Dataset (PETSECCV2004): 
26、PETS-ICVS 2003 Dataset (PETSICVS2003): 
27、PhoTex (PhoTex): 
28、Pilot European Image Processing Archive (PEIPA): 
http://peipa.essex.ac.uk/ 
29、Talking Face Video (): 
30、Texture Database (TDB): 
http://www-cvr.ai.uiuc.edu/ponce_grp/data 
31、Texture Database for the Measurement of Texture classification algorithms (MeasTex): 
32、The Color FERET Database (): 
http://www.itl.nist.gov/iad/humanid/colorferet/home.html 
33、The Extended M2VTS Database (XM2VTSDB ): 
http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/ 
34、The FERET Database (): 
http://www.itl.nist.gov/iad/humanid/feret/ 
35、The Japanese Female Facial Expression (JAFFE) Database (JAFFE): 
http://www.kasrl.org/jaffe.html 
36、The M2VTS Database (M2VTS): http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html 
37、The Psychological Image Collection at Stirling (PICS): 
http://pics.psych.stir.ac.uk/cgi-bin/PICS/New/pics.cgi 
38、The UMIST Face Database (UMIST): 
39、The University of Oulu Physics-Based Face Database (UOFD): 
http://www.ee.oulu.fi/research/imag/color/pbfd.html 
40、The Yale Face Database (YFD): 
http://cvc.yale.edu/projects/yalefaces/yalefaces.html 
41The Yale Face Database B (YFDB): 
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html 
42、Vision Texture Database (VisTex): 
43、VS-PETS 2003 Dataset (VSPETS2003):

Other useful links:(上述数据库及其它数据库的简介)
1、http://www.face-rec.org/databases/
2、http://web.mit.edu/emeyers/www/face_databases.html

一、人脸识别模型 1. DeepFace DeepFace是Facebook人工智能研究团队所开发的一种基于卷积神经网络的人脸识别模型。该模型通过多层卷积神经网络将输入的人脸图像转化为固定长度的向量,再通过向量相似度计算实现对人脸的识别。 2. FaceNet FaceNet是Google人工智能研究团队所开发的一种基于深度学习的人脸识别模型。该模型采用三元组损失函数,将同一人的不同人脸图像映射到嵌入空间中相近的位置,不同人的人脸图像映射到相距较远的位置,从而实现对人脸的识别。 3. Inception-ResNet Inception-ResNet是Google研究团队所开发的一种基于深度学习的人脸识别模型。该模型结合了Inception和ResNet两种架构的优点,采用残差连接和多尺度卷积操作,提高了对不同尺度、不同角度、不同表情的人脸识别能力。 二、人脸识别模型的原理 人脸识别模型的基本原理是将输入的人脸图像转化为固定长度的向量,并通过向量相似度计算实现对人脸的识别。具体实现过程中,一般采用卷积神经网络(CNN)或其他深度学习模型进行特征提取和分类。 在人脸识别任务中,特征提取是关键步骤,其目的是通过将人脸图像映射到高维特征空间中,提取出能够表征人脸独特特征的向量。这些向量具有以下特点: 1. 可判别性:同一人的不同图像之间的向量距离尽可能小,不同人的向量距离尽可能大。 2. 鲁棒性:对人脸姿势、表情、光照等变化具有较强的鲁棒性。 人脸识别模型通过比对输入的特征向量与数据库中保存的特征向量,计算出它们之间的相似度,并基于特定的阈值进行分类决策,从而实现人脸识别。 三、人脸识别模型的优缺点 1. DeepFace优点: a. 高精度:DeepFace在LFW人脸识别数据集上取得了99.35%的准确率。 b. 具有统一性:DeepFace的识别结果不受人脸表情、姿势和光照等因素的影响。 c. 计算效率高:DeepFace可对多张人脸图像同时进行识别,具有较高的计算效率。 2. DeepFace缺点: a. 训练数据要求高:DeepFace的训练数据要求非常高,需要准备大量人脸数据集。 b. 计算资源要求高:DeepFace需要大量的计算资源来完成训练和识别任务。 3. FaceNet优点: a. 高度可扩展:FaceNet的特征向量可以很容易地进行比较和检索,具有高度可扩展性。 b. 鲁棒性强:FaceNet的特征向量对人脸姿势、表情、光照等变化具有较强的鲁棒性。 c. 计算效率高:FaceNet可以在移动设备上实现快速的人脸识别。 4. FaceNet缺点: a. 训练数据集要求高:FaceNet的训练需要大量人脸数据集。 b. 计算资源要求高:FaceNet需要大量的计算资源来完成训练和识别任务。 5. Inception-ResNet优点: a. 鲁棒性强:Inception-ResNet对人脸姿势、表情、光照等变化具有较强的鲁棒性。 b. 对小尺寸人脸效果好:Inception-ResNet对小尺寸人脸的识别效果较好。 c. 计算效率高:Inception-ResNet可以在移动设备上实现快速的人脸识别。 6. Inception-ResNet缺点: a. 识别精度较低:相比于DeepFace和FaceNet等模型,Inception-ResNet的识别精度较低。 b. 训练时间长:Inception-ResNet的训练需要较长的时间。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值