问题描述:一个有n个元素的数组,这n个元素可以为正数也可以为负数,数组中连续的一个或者多个元素可以组成一个连续的子数组,一个数组可能有多个连续的子数组,求子数组和的最大值,例如:{1,-2,4,8,-4,7,-1,-5}最大和为子数组{4,8,-4,7},最大值为15
方法一:蛮力法
最简单也是最容易想到的方法就是找到所有子数组,然后求出子数组之和,在所有子数组的和取最大值。
public static int maxSubArray(int[] nums) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < nums.length; i++) {
int sum = 0;
for (int j = i; j < nums.length; j++) {
sum = sum + nums[j];
if(max < sum)
max = sum;
}
}
return max;
}
时间复杂度:O(n^2)
方法二:动态规划
首先可以根据数组的最后一个元素arr[n - 1]与最大子数组的关系分为以下3种情况:
1. 最大子数组包含arr[n - 1],即以arr[n - 1]结尾的
2. arr[n - 1]单独构成最大子数组
3. 最大子数组不包含arr[n - 1],那么求arr[1,2,…,n - 1]的最大数组转换为求arr[1,2,…,n - 2]的最大子数组
假设:
已经计算出arr[1,2,…,n - 1]最大的一段数组和为All[i - 1],同时也计算出包含arr[i - 1]的最大数组和为End[i - 1],则可以得出如下关系:
All[i - 1] = max{End[i - 1], arr[i - 1], All[i - 2]}
public static int maxSubArray(int[] nums) {
int len = nums.length;
int[] All = new int[len];
int[] End = new int[len];
All[0] = End[0] = nums[0];
for (int i = 1; i < len; i++) {
End[i] = Math.max(End[i - 1] + nums[i], nums[i]);
All[i] = Math.max(End[i], All[i - 1]);
}
return All[len - 1];
}
方法三:优化的动态规划方法
方法二中每次只用到All[i - 1]与End[i - 1], 而不是整个数组中的值,所以用两个变量来保存相应的值,冰球反复利用,这样就可以在时间复杂度为O(n)的情况下降低空间复杂度
public static int maxSubArray(int[] nums) {
int len = nums.length;
int All = nums[0];
int End = nums[0];
for (int i = 1; i < len; i++) {
End = Math.max(End + nums[i], nums[i]);
All = Math.max(End, All);
}
return All;
}
求最大子数组的位置
在方法二中,通过对公式End[i] = Math.max(End[i - 1] + nums[i], nums[i])分析可以看出,当End[i - 1] < 0 时,End[i] = arr[i],其中End[i] 表示包含arr[i]子数组和,如果End[i - 1] < 0 ,那么就从arr[i]开始。
public class maxSubIndex {
private static int begin = 0;
private static int end = 0;
public static int maxSub(int[] arr){
int start = 0;
int max = Integer.MIN_VALUE;
int sum = 0;
for (int i = 0; i < arr.length; i++) {
if(sum < 0){
sum = arr[i];
start = i;
}
else{
sum = sum + arr[i];
}
if(sum > max){
max = sum;
begin = start;
end = i;
}
}
return max;
}
public static void main(String[] args) {
int[] arr = {1,-2,4,8,-4,7,-1,-5};
System.out.println("maxsum: " + maxSub(arr));
System.out.println("begin index: " + begin);
System.out.println("end index: " + end);
}
}