动态规划---求最大子数组之和

本文探讨了如何使用动态规划方法来解决寻找数组中最大子数组之和的问题。通过递归公式f(i) = array[i] (i == 0 或 f(i-1) < 0) 和 f(i) = f(i-1) + array[i] (f(i-1) > 0),解释了如何计算以每个数字结尾的最大子数组和。在测试过程中发现,当数组只有一个元素时,原有程序可能出现错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package com.duoduo.test1;
public class Test4_2_2{
	    public static void main(String[] args){  
		    //int[] array = {-9,1,3,5,-1,7,-5,3,1};  
		    int [] array= {1,-2,4,8,-4,7,-1,-5};
		    int len=array.length;  
		    int[] c=new int[len];//引入一个数组  
		    int max = -1000;//用来记录数组c[]中的最大值    
		    int start = 0;//记录数组中子数组的最大和的开始位置    
		    int end = 0;//记录数组中子数组的最大和的结束位置    
		    int tmp = 0;//中间变量  
		    c[0] = array[0];  
		    for (int i = 1; i < len; ++i)  
		    {  
		        if (c[i - 1] > 0)  
		        {  
		            c[i] = c[i - 1] + array[i];  
		        }  
		        else  
		        {  
		            c[i] = array[i];  
		            tmp = i;  
		        }  
		        if (c[i] > max)  
		        {  
		            max = c[i];  
		            start = tmp;  
		            end = i;  
		        }  
		    }  
		    System.out.println(start+"~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值