Hive 用户指南

这份Hive用户指南详细介绍了Hive的结构、元数据、数据存储、基本操作和优化技巧。它涵盖了Hive与Hadoop的关系、与传统数据库的异同,以及Hive的表创建、数据加载、查询、DML操作、命令行接口和优化策略,如全排序、MapReduce操作、数据倾斜处理等。
摘要由CSDN通过智能技术生成

 

 

 

 

 

 

Hive 用户指南 v1.0

 

 

 

 

 

 

 

 

 

 

 

目录

1. HIVE结构 6

1.1 HIVE架构 6

1.2 Hive  Hadoop 关系 7

1.3 Hive 和普通关系数据库的异同 8

1.4 HIVE元数据库 9

1.4.1 DERBY 9

1.4.2 Mysql 10

1.5 HIVE的数据存储 11

1.6 其它HIVE操作 11

2. HIVE 基本操作 12

2.1 create table 12

2.1.1 总述 12

2.1.2 语法 12

2.1.3 基本例子 14

2.1.4 创建分区 15

2.1.5 其它例子 16

2.2 Alter Table 17

2.2.1 Add Partitions 17

2.2.2 Drop Partitions 17

2.2.3 Rename Table 17

2.2.4 Change Column 18

2.2.5 Add/Replace Columns 18

2.3 Create View 18

2.4 Show 19

2.5 Load 19

2.6 Insert 21

2.6.1 Inserting data into Hive Tables from queries 21

2.6.2 Writing data into filesystem from queries 21

2.7 Cli 22

2.7.1 Hive Command line Options 22

2.7.2 Hive interactive Shell Command 24

2.7.3 Hive Resources 24

2.7.4 调用pythonshell等语言 25

2.8 DROP 26

2.9 其它 27

2.9.1 Limit 27

2.9.2 Top k 27

2.9.3 REGEX Column Specification 27

3. Hive Select 27

3.1 Group By 28

3.2 Order /Sort By 28

4. Hive Join 29

5. HIVE参数设置 31

6. HIVE UDF 33

6.1 基本函数 33

6.1.1 关系操作符 33

6.1.2 代数操作符 34

6.1.3 逻辑操作符 35

6.1.4 复杂类型操作符 35

6.1.5 内建函数 36

6.1.6 数学函数 36

6.1.7 集合函数 36

6.1.8 类型转换 36

6.1.9 日期函数 36

6.1.10 条件函数 37

6.1.11 字符串函数 37

6.2 UDTF 39

6.2.1 Explode 39

7. HIVE MAP/REDUCE 41

7.1 JOIN 41

7.2 GROUP BY 42

7.3 DISTINCT 42

8. 使用HIVE注意点 43

8.1 字符集 43

8.2 压缩 43

8.3 count(distinct) 43

8.4 JOIN 43

8.5 DML操作 44

8.6 HAVING 44

8.7 子查询 44

8.8 Join中处理null值的语义区别 44

9. 优化与技巧 47

9.1 全排序 47

9.1.1 1 48

9.1.2 2 51

9.2 怎样做笛卡尔积 54

9.3 怎样写exist/in子句 54

9.4 怎样决定reducer个数 55

9.5 合并MapReduce操作 55

9.6 Bucket  sampling 56

9.7 Partition 57

9.8 JOIN 58

9.8.1 JOIN原则 58

9.8.2 Map Join 58

9.8.3 大表Join的数据偏斜 60

9.9 合并小文件 62

9.10 Group By 62

10. HIVE FAQ 62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. HIVE结构

Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。

1.1 HIVE架构

 

Hive 的结构可以分为以下几部分:

· 用户接口:包括 CLI, Client, WUI

· 元数据存储。通常是存储在关系数据库如 mysql, derby 中

· 解释器、编译器、优化器、执行器

· Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算

1、 用户接口主要有三个:CLI,Client 和 WUI。其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本。Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。

2、 Hive 将元数据存储在数据库中,如 mysql、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。

3、 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。

4、 Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比如 select * from tbl 不会生成 MapRedcue 任务)。 

1.2 Hive Hadoop 关系 

 

Hive 构建在 Hadoop 之上,

· HQL 中对查询语句的解释、优化、生成查询计划是由 Hive 完成的

· 所有的数据都是存储在 Hadoop 中

· 查询计划被转化为 MapReduce 任务,在 Hadoop 中执行(有些查询没有 MR 任务,如:select * from table)

· Hadoop和Hive都是用UTF-8编码的

 

1.3 Hive 和普通关系数据库的异同 

 

Hive

RDBMS

查询语言

HQL

SQL

数据存储

HDFS

Raw Device or Local FS

索引

执行

MapReduce

Excutor

执行延迟

处理数据规模

1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。

2. 数据存储位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。

3. 数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。

4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ...  VALUES 添加数据,使用 UPDATE ... SET 修改数据。

5. 索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。

6. 执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl 的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。

7. 执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。

8. 可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在 4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。

9. 数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。 

1.4 HIVE元数据库

Hive 将元数据存储在 RDBMS 中,一般常用的有MYSQL和DERBY。

1.4.1 DERBY

启动HIVE的元数据库

进入到hive的安装目录

Eg:

1、启动derby数据库

/home/admin/caona/hive/build/dist/

运行startNetworkServer -h 0.0.0.0

 

2、连接Derby数据库进行测试

查看/home/admin/caona/hive/build/dist/conf/hive-default.xml。

找到<property>

    <name>javax.jdo.option.ConnectionURL</name>

    <value>jdbc:derby://hadoop1:1527/metastore_db;create=true</value>

    <description>JDBC connect string for a JDBC metastore</description>

  </property>

进入derby安装目录

/home/admin/caona/hive/build/dist/db-derby-10.4.1.3-bin/bin

输入./ij

Connect 'jdbc:derby://hadoop1:1527/metastore_db;create=true';

 

3、元数据库数据字典

表名

说明

关联键

BUCKETING_COLS         

 

 

    COLUMNS            

Hive表字段信息(字段注释,字段名,字段类型,字段序号)

SD_ID

DBS

 元数据库信息,存放HDFS路径信息

DB_ID

PARTITION_KEYS         

Hive分区表分区键

PART_ID

SDS                    

所有hive表、表分区所对应的hdfs数据目录和数据格式。

SD_ID,SERDE_ID

SD_PARAMS              

序列化反序列化信息,如行分隔符、列分隔符、NULL的表示字符等

SERDE_ID

SEQUENCE_TABLE         

SEQUENCE_TABLE表保存了hive对象的下一个可用ID,如’org.apache.hadoop.hive.metastore.model.MTable’, 21,则下一个新创建的hive表其TBL_ID就是21,同时SEQUENCE_TABLE表中271786被更新为26(这里每次都是+5?)。同样,COLUMN,PARTITION等都有相应的记录

 

SERDES                 

 

 

SERDE_PARAMS           

 

 

SORT_COLS              

 

 

TABLE_PARAMS           

表级属性,如是否外部表,表注释等

TBL_ID

TBLS                   

所有hive表的基本信息

TBL_I

1. HIVE结构 Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数 据提取转化加载 (ETL),这是一种可以存储、 查询和分析存储在 Hadoop 中的大规模数据的 机制。 Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据。 同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理 内建的 mapper 和 reducer 无法完成的复杂的分析工作。 1.1HIVE 架构 Hive 的结构可以分为以下几部分: 用户接口:包括 CLI, Client, WUI 元数据存储。通常是存储在关系数据库如 mysql, derby 中 6 解释器、编译器、优化器、执行器 Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算 1、 用户接口主要有三个: CLI,Client 和 WUI。其中最常用的是 CLI , Cli 启动的时候, 会同时启动一个 Hive 副本。 Client 是 Hive 的客户端,用户连接至 Hive Server 。 在启动 Client 模式的时候, 需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server 。 WUI 是通过浏览器访问 Hive 。 2、 Hive 将元数据存储在数据库中,如 mysql 、 derby 。 Hive 中的元数据包括表的名字, 表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。 3、 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及 查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。 4、 Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比 如 select * from tbl 不会生成 MapRedcue 任务)。 1.2HiveHadoop 关系 Hive 构建在 Hadoop 之上, HQL 中对查询语句的解释、优化、生成查询计划是由 Hive 完成的 所有的数据都是存储在 Hadoop 中 查询计划被转化为 MapReduce 任务,在 Hadoop 中执行(有些查询没有 MR 任 务,如: select * from table ) HadoopHive 都是用 UTF-8 编码的 7 1.3Hive 和普通关系数据库的异同 Hive RDBMS 查询语言 HQL SQL 数据存储 HDFS Raw Device or Local FS 索引 无 有 执行 MapReduce Excutor 执行延迟 高 低 处理数据规模 大 小 1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计 了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开 发。 2. 数据存储位置。 Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中 的。而数据库则可以将数据保存在块设备或者本地文件系统中。 3. 数据格式。 Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数 据格式需要指定三个属性:列分隔符(通常为空格、” t ”、” x001″)、行分隔符 (” n”)以及读取文件数据的方法( Hive 中默认有三个文件格式 TextFile , SequenceFile 以及 RCFile )。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此, Hive 在加载的过程中不会对数据本身进行任何修 改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数 据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储, 因此,数据库加载数据的过程会比较耗时。 4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。 因此, Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。 而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ... SET 修改数据。 5. 索引。之前已经说过, Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会 对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。 Hive 要访问数据中满足 条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引 入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问, Hive 仍然 可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特 定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较 高,决定了 Hive 不适合在线数据查询。 6. 执行。 Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl 的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值